bonosa
4
053cb21
raw
history blame
1.35 kB
import gradio as gr
import cv2
from ultralytics import YOLO
model = YOLO('best.pt')
path = [['pothole1.jpg'], ['pothole2.jpg'], ['pothole3.jpg'],['pothole4.jpg']]
import cv2
def resize_image(image_path):
# Read the image using OpenCV
img = cv2.imread(image_path)
# Resize the image to 512x512
resized_img = cv2.resize(img, (512, 512), interpolation = cv2.INTER_LINEAR)
return resized_img
def prediction1(image_path):
#image = resize_image(image_path)
image = cv2.imread(image_path)
outputs = model.predict(source=image_path)
results = outputs[0].cpu().numpy()
for i, det in enumerate(results.boxes.xyxy):
cv2.rectangle(
image,
(int(det[0]), int(det[1])),
(int(det[2]), int(det[3])),
color=(0,255, 0),
thickness=1,
lineType=cv2.LINE_AA,
)
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
inputs_image = [
gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
fn=prediction1,
inputs=inputs_image,
outputs=outputs_image,
title="Pothole detection",
description="Detects potholes in images",
#cache_examples=True,
examples=path
)
interface_image.launch()