Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
from ultralytics import YOLO | |
model = YOLO('best.pt') | |
path = [['pothole1.jpg'], ['pothole2.jpg'], ['pothole3.jpg'],['pothole4.jpg']] | |
import cv2 | |
def resize_image(image_path): | |
# Read the image using OpenCV | |
img = cv2.imread(image_path) | |
# Resize the image to 512x512 | |
resized_img = cv2.resize(img, (512, 512), interpolation = cv2.INTER_LINEAR) | |
return resized_img | |
def prediction1(image_path): | |
#image = resize_image(image_path) | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
cv2.rectangle( | |
image, | |
(int(det[0]), int(det[1])), | |
(int(det[2]), int(det[3])), | |
color=(0,255, 0), | |
thickness=1, | |
lineType=cv2.LINE_AA, | |
) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=prediction1, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Pothole detection", | |
description="Detects potholes in images", | |
#cache_examples=True, | |
examples=path | |
) | |
interface_image.launch() | |