File size: 1,349 Bytes
053cb21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import cv2

from ultralytics import YOLO

model = YOLO('best.pt')
path  = [['pothole1.jpg'], ['pothole2.jpg'], ['pothole3.jpg'],['pothole4.jpg']]

import cv2

def resize_image(image_path):
    # Read the image using OpenCV
    img = cv2.imread(image_path)

    # Resize the image to 512x512
    resized_img = cv2.resize(img, (512, 512), interpolation = cv2.INTER_LINEAR)

    return resized_img


def prediction1(image_path):
    #image = resize_image(image_path)
    image = cv2.imread(image_path)
    outputs = model.predict(source=image_path)
    results = outputs[0].cpu().numpy()
    for i, det in enumerate(results.boxes.xyxy):
        cv2.rectangle(
            image,
            (int(det[0]), int(det[1])),
            (int(det[2]), int(det[3])),
            color=(0,255, 0),
            thickness=1,
            lineType=cv2.LINE_AA,
        )
    return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

inputs_image = [
    gr.components.Image(type="filepath", label="Input Image"),
]
outputs_image = [
    gr.components.Image(type="numpy", label="Output Image"),
]
interface_image = gr.Interface(
    fn=prediction1,
    inputs=inputs_image,
    outputs=outputs_image,
    title="Pothole detection",
    description="Detects potholes in images",
    #cache_examples=True,
    examples=path
    
)



interface_image.launch()