Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,10 +2,336 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
5 |
import time
|
6 |
import io
|
7 |
import subprocess
|
8 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import cv2
|
10 |
|
11 |
# Install required packages
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
+
import timeimport gradio as gr
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
import time
|
10 |
import io
|
11 |
import subprocess
|
12 |
import sys
|
13 |
+
|
14 |
+
# Install required packages
|
15 |
+
def install_packages():
|
16 |
+
packages = [
|
17 |
+
"transformers",
|
18 |
+
"accelerate",
|
19 |
+
"timm",
|
20 |
+
"easyocr"
|
21 |
+
]
|
22 |
+
for package in packages:
|
23 |
+
try:
|
24 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
25 |
+
except:
|
26 |
+
print(f"Warning: Could not install {package}")
|
27 |
+
|
28 |
+
# Install packages at startup
|
29 |
+
install_packages()
|
30 |
+
|
31 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoConfig
|
32 |
+
|
33 |
+
# Global variables for model
|
34 |
+
processor = None
|
35 |
+
model = None
|
36 |
+
config = None
|
37 |
+
ocr_reader = None
|
38 |
+
|
39 |
+
def load_model():
|
40 |
+
"""Load the Gemma 3n model"""
|
41 |
+
global processor, model, config, ocr_reader
|
42 |
+
|
43 |
+
try:
|
44 |
+
print("π Loading Gemma 3n model...")
|
45 |
+
GEMMA_PATH = "google/gemma-3n-e2b-it"
|
46 |
+
|
47 |
+
# Load configuration
|
48 |
+
config = AutoConfig.from_pretrained(GEMMA_PATH, trust_remote_code=True)
|
49 |
+
print("β
Config loaded")
|
50 |
+
|
51 |
+
# Load processor
|
52 |
+
processor = AutoProcessor.from_pretrained(GEMMA_PATH, trust_remote_code=True)
|
53 |
+
print("β
Processor loaded")
|
54 |
+
|
55 |
+
# Load model
|
56 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
57 |
+
GEMMA_PATH,
|
58 |
+
config=config,
|
59 |
+
torch_dtype="auto",
|
60 |
+
device_map="auto",
|
61 |
+
trust_remote_code=True
|
62 |
+
)
|
63 |
+
print("β
Model loaded successfully!")
|
64 |
+
|
65 |
+
# Set up compilation fix
|
66 |
+
import torch._dynamo
|
67 |
+
torch._dynamo.config.suppress_errors = True
|
68 |
+
|
69 |
+
# Initialize OCR
|
70 |
+
try:
|
71 |
+
import easyocr
|
72 |
+
ocr_reader = easyocr.Reader(['en'], gpu=False, verbose=False)
|
73 |
+
print("β
EasyOCR initialized")
|
74 |
+
except Exception as e:
|
75 |
+
print(f"β οΈ EasyOCR not available: {e}")
|
76 |
+
ocr_reader = None
|
77 |
+
|
78 |
+
return True
|
79 |
+
|
80 |
+
except Exception as e:
|
81 |
+
print(f"β Model loading failed: {e}")
|
82 |
+
return False
|
83 |
+
|
84 |
+
def generate_soap_note(text):
|
85 |
+
"""Generate SOAP note using Gemma 3n"""
|
86 |
+
if model is None or processor is None:
|
87 |
+
return "β Model not loaded. Please wait for initialization."
|
88 |
+
|
89 |
+
soap_prompt = f"""You are a medical AI assistant. Convert the following medical notes into a properly formatted SOAP note.
|
90 |
+
|
91 |
+
Medical notes:
|
92 |
+
{text}
|
93 |
+
|
94 |
+
Please format as:
|
95 |
+
S - SUBJECTIVE: (chief complaint, history of present illness, past medical history, medications, allergies)
|
96 |
+
O - OBJECTIVE: (vital signs, physical examination findings)
|
97 |
+
A - ASSESSMENT: (diagnosis/clinical impression)
|
98 |
+
P - PLAN: (treatment plan, follow-up instructions)
|
99 |
+
|
100 |
+
Generate a complete, professional SOAP note:"""
|
101 |
+
|
102 |
+
messages = [{
|
103 |
+
"role": "system",
|
104 |
+
"content": [{"type": "text", "text": "You are an expert medical AI assistant specialized in creating SOAP notes from medical documentation."}]
|
105 |
+
}, {
|
106 |
+
"role": "user",
|
107 |
+
"content": [{"type": "text", "text": soap_prompt}]
|
108 |
+
}]
|
109 |
+
|
110 |
+
try:
|
111 |
+
inputs = processor.apply_chat_template(
|
112 |
+
messages,
|
113 |
+
add_generation_prompt=True,
|
114 |
+
tokenize=True,
|
115 |
+
return_dict=True,
|
116 |
+
return_tensors="pt"
|
117 |
+
).to(model.device)
|
118 |
+
|
119 |
+
input_len = inputs["input_ids"].shape[-1]
|
120 |
+
|
121 |
+
with torch.no_grad():
|
122 |
+
outputs = model.generate(
|
123 |
+
**inputs,
|
124 |
+
max_new_tokens=400,
|
125 |
+
do_sample=True,
|
126 |
+
temperature=0.1,
|
127 |
+
top_p=0.95,
|
128 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
129 |
+
disable_compile=True
|
130 |
+
)
|
131 |
+
|
132 |
+
response = processor.batch_decode(
|
133 |
+
outputs[:, input_len:],
|
134 |
+
skip_special_tokens=True
|
135 |
+
)[0].strip()
|
136 |
+
|
137 |
+
return response
|
138 |
+
|
139 |
+
except Exception as e:
|
140 |
+
return f"β SOAP generation failed: {str(e)}"
|
141 |
+
|
142 |
+
def extract_text_from_image(image):
|
143 |
+
"""Extract text using EasyOCR - fast processing"""
|
144 |
+
if ocr_reader is None:
|
145 |
+
return "β OCR not available"
|
146 |
+
|
147 |
+
try:
|
148 |
+
if hasattr(image, 'convert'):
|
149 |
+
image = image.convert('RGB')
|
150 |
+
img_array = np.array(image)
|
151 |
+
|
152 |
+
results = ocr_reader.readtext(img_array, detail=0, paragraph=True)
|
153 |
+
if results:
|
154 |
+
return ' '.join(results).strip()
|
155 |
+
else:
|
156 |
+
return "β No text detected in image"
|
157 |
+
|
158 |
+
except Exception as e:
|
159 |
+
return f"β OCR failed: {str(e)}"
|
160 |
+
|
161 |
+
def process_medical_input(image, text):
|
162 |
+
"""Main processing function for the Gradio interface"""
|
163 |
+
|
164 |
+
if image is not None and text.strip():
|
165 |
+
return "β οΈ Please provide either an image OR text, not both.", ""
|
166 |
+
|
167 |
+
if image is not None:
|
168 |
+
# Process image
|
169 |
+
print("π Extracting text from image...")
|
170 |
+
extracted_text = extract_text_from_image(image)
|
171 |
+
|
172 |
+
if extracted_text.startswith('β'):
|
173 |
+
return extracted_text, ""
|
174 |
+
|
175 |
+
print("π€ Generating SOAP note...")
|
176 |
+
soap_note = generate_soap_note(extracted_text)
|
177 |
+
|
178 |
+
return extracted_text, soap_note
|
179 |
+
|
180 |
+
elif text.strip():
|
181 |
+
# Process text directly
|
182 |
+
print("π€ Generating SOAP note from text...")
|
183 |
+
soap_note = generate_soap_note(text.strip())
|
184 |
+
return text.strip(), soap_note
|
185 |
+
|
186 |
+
else:
|
187 |
+
return "β Please provide either an image or text input.", ""
|
188 |
+
|
189 |
+
def create_demo():
|
190 |
+
"""Create the Gradio demo interface"""
|
191 |
+
|
192 |
+
# Sample text for demonstration
|
193 |
+
sample_text = """Patient: John Smith, 45yo male
|
194 |
+
CC: Chest pain
|
195 |
+
Vitals: BP 140/90, HR 88, RR 16, O2 98%, Temp 98.6F
|
196 |
+
HPI: Patient reports crushing chest pain x 2 hours, radiating to left arm
|
197 |
+
PMH: HTN, DM Type 2
|
198 |
+
Current Meds: Lisinopril 10mg daily, Metformin 500mg BID
|
199 |
+
PE: Diaphoretic, anxious appearance
|
200 |
+
EKG: ST elevation in leads II, III, aVF"""
|
201 |
+
|
202 |
+
with gr.Blocks(title="Medical OCR SOAP Generator", theme=gr.themes.Soft()) as demo:
|
203 |
+
|
204 |
+
gr.HTML("""
|
205 |
+
<h1>π₯ Medical OCR SOAP Generator - LIVE DEMO</h1>
|
206 |
+
<h2>π― For Competition Judges - Quick 2-Minute Demo:</h2>
|
207 |
+
|
208 |
+
<div style="background-color: #e6f3ff; padding: 15px; border-radius: 10px; margin: 10px 0;">
|
209 |
+
<h3>π SAMPLE IMAGE PROVIDED:</h3>
|
210 |
+
<p><strong>π Download "docs-note-to-upload.jpg" from the Files tab above, then upload it below</strong></p>
|
211 |
+
<p><strong>OR</strong> click "Try Sample Medical Text" button for instant text demo</p>
|
212 |
+
</div>
|
213 |
+
|
214 |
+
<h3>Demo Steps:</h3>
|
215 |
+
<ol>
|
216 |
+
<li><strong>Upload the sample image</strong> (docs-note-to-upload.jpg from Files tab) <strong>OR</strong> click sample text button</li>
|
217 |
+
<li><strong>Click "Generate SOAP Note"</strong></li>
|
218 |
+
<li><strong>Wait ~2 minutes</strong> for AI processing (first time only)</li>
|
219 |
+
<li><strong>See professional SOAP note</strong> generated by Gemma 3n</li>
|
220 |
+
</ol>
|
221 |
+
|
222 |
+
<h3>β
What This Demo Shows:</h3>
|
223 |
+
<ul>
|
224 |
+
<li><strong>Real OCR</strong> extraction from handwritten medical notes</li>
|
225 |
+
<li><strong>AI-powered medical reasoning</strong> with Gemma 3n</li>
|
226 |
+
<li><strong>Professional SOAP formatting</strong> (Subjective, Objective, Assessment, Plan)</li>
|
227 |
+
<li><strong>HIPAA-compliant</strong> local processing</li>
|
228 |
+
</ul>
|
229 |
+
|
230 |
+
<p><strong>β οΈ Note:</strong> First generation takes ~2 minutes as model loads. Subsequent ones are faster.</p>
|
231 |
+
<hr>
|
232 |
+
""")
|
233 |
+
|
234 |
+
with gr.Row():
|
235 |
+
with gr.Column():
|
236 |
+
image_input = gr.Image(
|
237 |
+
type="pil",
|
238 |
+
label="π· Upload Medical Image",
|
239 |
+
height=300
|
240 |
+
)
|
241 |
+
|
242 |
+
text_input = gr.Textbox(
|
243 |
+
label="π Or Enter Medical Text",
|
244 |
+
placeholder=sample_text,
|
245 |
+
lines=8,
|
246 |
+
max_lines=15
|
247 |
+
)
|
248 |
+
|
249 |
+
submit_btn = gr.Button(
|
250 |
+
"Generate SOAP Note",
|
251 |
+
variant="primary",
|
252 |
+
size="lg"
|
253 |
+
)
|
254 |
+
|
255 |
+
with gr.Column():
|
256 |
+
extracted_output = gr.Textbox(
|
257 |
+
label="π Extracted/Input Text",
|
258 |
+
lines=6,
|
259 |
+
max_lines=10
|
260 |
+
)
|
261 |
+
|
262 |
+
soap_output = gr.Textbox(
|
263 |
+
label="π₯ Generated SOAP Note",
|
264 |
+
lines=12,
|
265 |
+
max_lines=20
|
266 |
+
)
|
267 |
+
|
268 |
+
# Example section
|
269 |
+
gr.Markdown("### π Quick Test Example")
|
270 |
+
example_btn = gr.Button("Try Sample Medical Text", variant="secondary")
|
271 |
+
|
272 |
+
def load_example():
|
273 |
+
return sample_text, None
|
274 |
+
|
275 |
+
example_btn.click(
|
276 |
+
load_example,
|
277 |
+
outputs=[text_input, image_input]
|
278 |
+
)
|
279 |
+
|
280 |
+
# Process function
|
281 |
+
submit_btn.click(
|
282 |
+
process_medical_input,
|
283 |
+
inputs=[image_input, text_input],
|
284 |
+
outputs=[extracted_output, soap_output]
|
285 |
+
)
|
286 |
+
|
287 |
+
gr.Markdown("""
|
288 |
+
---
|
289 |
+
**About:** This application uses Google's Gemma 3n model for medical text understanding and EasyOCR for handwriting recognition.
|
290 |
+
All processing is done locally for HIPAA compliance.
|
291 |
+
|
292 |
+
**Competition Entry:** Medical AI Innovation Challenge 2024
|
293 |
+
""")
|
294 |
+
|
295 |
+
return demo
|
296 |
+
|
297 |
+
# Initialize the application
|
298 |
+
if __name__ == "__main__":
|
299 |
+
print("π Starting Medical OCR SOAP Generator...")
|
300 |
+
|
301 |
+
# Load model
|
302 |
+
model_loaded = load_model()
|
303 |
+
|
304 |
+
if model_loaded:
|
305 |
+
print("β
All systems ready!")
|
306 |
+
demo = create_demo()
|
307 |
+
demo.launch(
|
308 |
+
share=True,
|
309 |
+
server_name="0.0.0.0",
|
310 |
+
server_port=7860
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
print("β Failed to load model. Creating fallback demo...")
|
314 |
+
|
315 |
+
def fallback_demo():
|
316 |
+
return "β Model loading failed. Please check the logs.", "β Model not available."
|
317 |
+
|
318 |
+
demo = gr.Interface(
|
319 |
+
fn=fallback_demo,
|
320 |
+
inputs=[
|
321 |
+
gr.Image(type="pil", label="Upload Medical Image"),
|
322 |
+
gr.Textbox(label="Enter Medical Text", lines=5)
|
323 |
+
],
|
324 |
+
outputs=[
|
325 |
+
gr.Textbox(label="Status"),
|
326 |
+
gr.Textbox(label="Error Message")
|
327 |
+
],
|
328 |
+
title="β Medical OCR - Model Loading Failed"
|
329 |
+
)
|
330 |
+
|
331 |
+
demo.launch(share=True)
|
332 |
+
import io
|
333 |
+
import subprocess
|
334 |
+
import sys
|
335 |
import cv2
|
336 |
|
337 |
# Install required packages
|