Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
|
@@ -1,571 +1,309 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
import
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
return
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
print("
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
try:
|
| 311 |
-
results = ocr_reader.readtext(processed_img, detail=0, paragraph=True)
|
| 312 |
-
if results:
|
| 313 |
-
extracted_text = ' '.join(results)
|
| 314 |
-
if len(extracted_text.strip()) > 10:
|
| 315 |
-
return clean_medical_text(extracted_text)
|
| 316 |
-
except Exception as e:
|
| 317 |
-
print(f"EasyOCR failed: {e}")
|
| 318 |
-
|
| 319 |
-
# Fallback to Tesseract with medical optimization
|
| 320 |
-
try:
|
| 321 |
-
import pytesseract
|
| 322 |
-
|
| 323 |
-
# Medical-optimized Tesseract config
|
| 324 |
-
custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,;:()[]{}/-+= '
|
| 325 |
-
|
| 326 |
-
tesseract_text = pytesseract.image_to_string(processed_img, config=custom_config)
|
| 327 |
-
|
| 328 |
-
if len(tesseract_text.strip()) > 5:
|
| 329 |
-
return clean_medical_text(tesseract_text)
|
| 330 |
-
|
| 331 |
-
except Exception as e:
|
| 332 |
-
print(f"Tesseract failed: {e}")
|
| 333 |
-
|
| 334 |
-
return "β Could not extract text from image. Please ensure the image is clear and try again."
|
| 335 |
-
|
| 336 |
-
except Exception as e:
|
| 337 |
-
return f"β Error processing image: {str(e)}"
|
| 338 |
-
|
| 339 |
-
def preprocess_medical_image(image):
|
| 340 |
-
"""Optimized preprocessing for medical handwriting"""
|
| 341 |
-
try:
|
| 342 |
-
img_array = np.array(image)
|
| 343 |
-
|
| 344 |
-
# Convert to grayscale
|
| 345 |
-
if len(img_array.shape) == 3:
|
| 346 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
| 347 |
-
else:
|
| 348 |
-
gray = img_array
|
| 349 |
-
|
| 350 |
-
# Resize for optimal OCR (medical notes are often small)
|
| 351 |
-
height, width = gray.shape
|
| 352 |
-
if height < 400 or width < 400:
|
| 353 |
-
scale_factor = max(400/height, 400/width)
|
| 354 |
-
new_width = int(width * scale_factor)
|
| 355 |
-
new_height = int(height * scale_factor)
|
| 356 |
-
gray = cv2.resize(gray, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
|
| 357 |
-
|
| 358 |
-
# Advanced preprocessing for handwritten medical text
|
| 359 |
-
# 1. Noise reduction
|
| 360 |
-
denoised = cv2.fastNlMeansDenoising(gray)
|
| 361 |
-
|
| 362 |
-
# 2. Contrast enhancement specifically for handwriting
|
| 363 |
-
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
|
| 364 |
-
enhanced = clahe.apply(denoised)
|
| 365 |
-
|
| 366 |
-
# 3. Morphological operations to clean up text
|
| 367 |
-
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,1))
|
| 368 |
-
cleaned = cv2.morphologyEx(enhanced, cv2.MORPH_CLOSE, kernel)
|
| 369 |
-
|
| 370 |
-
# 4. Adaptive thresholding (better for varying lighting)
|
| 371 |
-
thresh = cv2.adaptiveThreshold(
|
| 372 |
-
cleaned, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
return thresh
|
| 376 |
-
|
| 377 |
-
except Exception as e:
|
| 378 |
-
print(f"β Image preprocessing error: {e}")
|
| 379 |
-
return np.array(image)
|
| 380 |
-
|
| 381 |
-
def clean_medical_text(text):
|
| 382 |
-
"""Clean extracted text with medical context awareness"""
|
| 383 |
-
# Remove excessive whitespace and empty lines
|
| 384 |
-
lines = [line.strip() for line in text.split('\n') if line.strip()]
|
| 385 |
-
|
| 386 |
-
# Medical text cleaning
|
| 387 |
-
cleaned_lines = []
|
| 388 |
-
for line in lines:
|
| 389 |
-
# Remove obvious OCR artifacts
|
| 390 |
-
line = line.replace('|', 'l').replace('_', ' ').replace('~', '-')
|
| 391 |
-
|
| 392 |
-
# Fix common medical abbreviations that OCR might misread
|
| 393 |
-
medical_corrections = {
|
| 394 |
-
'BP': 'BP', 'HR': 'HR', 'RR': 'RR', 'O2': 'O2',
|
| 395 |
-
'mg': 'mg', 'ml': 'ml', 'cc': 'cc', 'cm': 'cm'
|
| 396 |
-
}
|
| 397 |
-
|
| 398 |
-
for wrong, correct in medical_corrections.items():
|
| 399 |
-
line = line.replace(wrong.lower(), correct)
|
| 400 |
-
|
| 401 |
-
if len(line) > 1: # Filter out single characters
|
| 402 |
-
cleaned_lines.append(line)
|
| 403 |
-
|
| 404 |
-
return '\n'.join(cleaned_lines)
|
| 405 |
-
|
| 406 |
-
# Enhanced Gradio Interface
|
| 407 |
-
def gradio_generate_soap(medical_notes, uploaded_image, model_data):
|
| 408 |
-
"""Main Gradio interface function"""
|
| 409 |
-
model, tokenizer = model_data if model_data else (None, None)
|
| 410 |
-
ocr_reader = getattr(gradio_generate_soap, 'ocr_reader', None)
|
| 411 |
-
|
| 412 |
-
text_to_process = medical_notes.strip() if medical_notes else ""
|
| 413 |
-
|
| 414 |
-
# Process uploaded image with enhanced OCR
|
| 415 |
-
if uploaded_image is not None:
|
| 416 |
-
try:
|
| 417 |
-
print("π Extracting text from medical image...")
|
| 418 |
-
extracted_text = extract_text_from_image(uploaded_image, ocr_reader)
|
| 419 |
-
|
| 420 |
-
if not extracted_text.startswith("β"):
|
| 421 |
-
if not text_to_process:
|
| 422 |
-
text_to_process = f"--- Extracted from uploaded image ---\n{extracted_text}"
|
| 423 |
-
else:
|
| 424 |
-
text_to_process = f"{text_to_process}\n\n--- Additional text from image ---\n{extracted_text}"
|
| 425 |
-
else:
|
| 426 |
-
return extracted_text
|
| 427 |
-
|
| 428 |
-
except Exception as e:
|
| 429 |
-
return f"β Error processing image: {str(e)}"
|
| 430 |
-
|
| 431 |
-
if not text_to_process:
|
| 432 |
-
return "β Please enter medical notes manually or upload an image with medical text"
|
| 433 |
-
|
| 434 |
-
# Generate SOAP note using Gemma 3n
|
| 435 |
-
try:
|
| 436 |
-
return generate_soap_note_gemma(text_to_process, model, tokenizer)
|
| 437 |
-
except Exception as e:
|
| 438 |
-
return f"β Error generating SOAP note: {str(e)}"
|
| 439 |
-
|
| 440 |
-
# Example medical notes for testing
|
| 441 |
-
medical_examples = {
|
| 442 |
-
'chest_pain': """Patient: John Smith, 45yo M
|
| 443 |
-
CC: Chest pain x 2 hours
|
| 444 |
-
HPI: Sudden onset sharp substernal chest pain 7/10, radiating to L arm. Associated SOB, diaphoresis. No N/V.
|
| 445 |
-
PMH: HTN, no CAD
|
| 446 |
-
VS: BP 150/90, HR 110, RR 22, O2 96% RA
|
| 447 |
-
PE: Anxious, diaphoretic. RRR, no murmur. CTAB. No edema.
|
| 448 |
-
A: Acute chest pain, r/o MI
|
| 449 |
-
P: EKG, troponins, CXR, ASA 325mg, monitor""",
|
| 450 |
-
|
| 451 |
-
'diabetes': """Patient: Maria Garcia, 52yo F
|
| 452 |
-
CC: Increased thirst, urination x 3 weeks
|
| 453 |
-
HPI: Polyuria, polydipsia, 10lb weight loss. FH DM. No fever, abd pain.
|
| 454 |
-
VS: BP 140/85, HR 88, BMI 28
|
| 455 |
-
PE: Mild dehydration, dry MM. RRR. No diabetic foot changes.
|
| 456 |
-
Labs: Random glucose 280, HbA1c pending
|
| 457 |
-
A: New onset DM Type 2
|
| 458 |
-
P: HbA1c, CMP, diabetic education, metformin, f/u 2 weeks""",
|
| 459 |
-
|
| 460 |
-
'pediatric': """Patient: Emma Thompson, 8yo F
|
| 461 |
-
CC: Fever, sore throat x 2 days
|
| 462 |
-
HPI: Fever 102F, sore throat, odynophagia, decreased appetite. No cough/rhinorrhea.
|
| 463 |
-
VS: T 101.8F, HR 110, RR 20, O2 99%
|
| 464 |
-
PE: Alert, mildly ill. Throat erythematous w/ tonsillar exudate. Anterior cervical LAD.
|
| 465 |
-
A: Strep pharyngitis (probable)
|
| 466 |
-
P: Rapid strep, throat culture, amoxicillin if +, supportive care, RTC PRN"""
|
| 467 |
-
}
|
| 468 |
-
|
| 469 |
-
# Initialize everything
|
| 470 |
-
def initialize_app():
|
| 471 |
-
"""Initialize the complete application"""
|
| 472 |
-
print("π Initializing Scribbled Docs SOAP Generator...")
|
| 473 |
-
|
| 474 |
-
# Setup device
|
| 475 |
-
device = setup_device()
|
| 476 |
-
|
| 477 |
-
# Load model
|
| 478 |
-
model, tokenizer = load_unsloth_gemma_model(device)
|
| 479 |
-
|
| 480 |
-
# Initialize OCR
|
| 481 |
-
ocr_reader = initialize_ocr()
|
| 482 |
-
gradio_generate_soap.ocr_reader = ocr_reader
|
| 483 |
-
|
| 484 |
-
return model, tokenizer
|
| 485 |
-
|
| 486 |
-
# Create the main Gradio interface
|
| 487 |
-
def create_interface(model, tokenizer):
|
| 488 |
-
"""Create the main Gradio interface"""
|
| 489 |
-
|
| 490 |
-
interface = gr.Interface(
|
| 491 |
-
fn=lambda notes, image: gradio_generate_soap(notes, image, (model, tokenizer)),
|
| 492 |
-
inputs=[
|
| 493 |
-
gr.Textbox(
|
| 494 |
-
lines=8,
|
| 495 |
-
placeholder="Enter medical notes here...\n\nExample:\nPatient: John Doe, 45yo M\nCC: Chest pain\nVS: BP 140/90, HR 88\n...",
|
| 496 |
-
label="π Medical Notes (Manual Entry)",
|
| 497 |
-
info="Enter unstructured medical notes or upload an image below"
|
| 498 |
-
),
|
| 499 |
-
gr.Image(
|
| 500 |
-
type="pil",
|
| 501 |
-
label="π· Upload Medical Image (Handwritten/Typed Notes)",
|
| 502 |
-
sources=["upload", "webcam"],
|
| 503 |
-
info="Upload PNG/JPG images of medical notes - handwritten or typed"
|
| 504 |
-
)
|
| 505 |
-
],
|
| 506 |
-
outputs=[
|
| 507 |
-
gr.Textbox(
|
| 508 |
-
lines=20,
|
| 509 |
-
label="π Generated SOAP Note",
|
| 510 |
-
show_copy_button=True,
|
| 511 |
-
info="Professional SOAP note generated from your input"
|
| 512 |
-
)
|
| 513 |
-
],
|
| 514 |
-
title="π₯ Scribbled Docs - Medical SOAP Note Generator",
|
| 515 |
-
description="""
|
| 516 |
-
**Transform medical notes into professional SOAP documentation using Gemma 3n AI**
|
| 517 |
-
|
| 518 |
-
π **100% Offline & HIPAA Compliant** - All processing happens locally on your device
|
| 519 |
-
π€ **Powered by Unsloth-optimized Gemma 3n** - 4-bit quantized for efficiency
|
| 520 |
-
π **Supports handwritten & typed notes** - Advanced OCR for medical handwriting
|
| 521 |
-
|
| 522 |
-
**Instructions:**
|
| 523 |
-
1. Enter medical notes manually OR upload an image
|
| 524 |
-
2. Click Submit to generate a structured SOAP note
|
| 525 |
-
3. Copy the result for use in your medical records
|
| 526 |
-
|
| 527 |
-
**Perfect for:** Emergency medicine, family practice, internal medicine, pediatrics
|
| 528 |
-
""",
|
| 529 |
-
examples=[
|
| 530 |
-
[medical_examples['chest_pain'], None],
|
| 531 |
-
[medical_examples['diabetes'], None],
|
| 532 |
-
[medical_examples['pediatric'], None]
|
| 533 |
-
],
|
| 534 |
-
theme=gr.themes.Soft(
|
| 535 |
-
primary_hue="blue",
|
| 536 |
-
secondary_hue="green"
|
| 537 |
-
),
|
| 538 |
-
allow_flagging="never",
|
| 539 |
-
analytics_enabled=False
|
| 540 |
-
)
|
| 541 |
-
|
| 542 |
-
return interface
|
| 543 |
-
|
| 544 |
-
# Main execution
|
| 545 |
-
if __name__ == "__main__":
|
| 546 |
-
try:
|
| 547 |
-
# Initialize app
|
| 548 |
-
model, tokenizer = initialize_app()
|
| 549 |
-
|
| 550 |
-
# Create and launch interface
|
| 551 |
-
interface = create_interface(model, tokenizer)
|
| 552 |
-
|
| 553 |
-
print("\nπ― Scribbled Docs SOAP Generator Ready!")
|
| 554 |
-
print("π± Features:")
|
| 555 |
-
print(" β
Offline processing (HIPAA compliant)")
|
| 556 |
-
print(" β
Unsloth-optimized Gemma 3n model")
|
| 557 |
-
print(" β
Handwritten note OCR")
|
| 558 |
-
print(" β
Professional SOAP formatting")
|
| 559 |
-
print(" β
Medical terminology aware")
|
| 560 |
-
|
| 561 |
-
# Launch interface
|
| 562 |
-
interface.launch(
|
| 563 |
-
share=True, # Creates public link
|
| 564 |
-
server_port=7860,
|
| 565 |
-
show_error=True,
|
| 566 |
-
quiet=False
|
| 567 |
-
)
|
| 568 |
-
|
| 569 |
-
except Exception as e:
|
| 570 |
-
print(f"β Error launching application: {e}")
|
| 571 |
-
print("π‘ Make sure you have installed: pip install unsloth gradio easyocr opencv-python")
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import time
|
| 6 |
+
import io
|
| 7 |
+
import subprocess
|
| 8 |
+
import sys
|
| 9 |
+
|
| 10 |
+
# Install required packages
|
| 11 |
+
def install_packages():
|
| 12 |
+
packages = [
|
| 13 |
+
"transformers",
|
| 14 |
+
"accelerate",
|
| 15 |
+
"timm",
|
| 16 |
+
"easyocr"
|
| 17 |
+
]
|
| 18 |
+
for package in packages:
|
| 19 |
+
try:
|
| 20 |
+
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
| 21 |
+
except:
|
| 22 |
+
print(f"Warning: Could not install {package}")
|
| 23 |
+
|
| 24 |
+
# Install packages at startup
|
| 25 |
+
install_packages()
|
| 26 |
+
|
| 27 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoConfig
|
| 28 |
+
|
| 29 |
+
# Global variables for model
|
| 30 |
+
processor = None
|
| 31 |
+
model = None
|
| 32 |
+
config = None
|
| 33 |
+
ocr_reader = None
|
| 34 |
+
|
| 35 |
+
def load_model():
|
| 36 |
+
"""Load the Gemma 3n model"""
|
| 37 |
+
global processor, model, config, ocr_reader
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
print("π Loading Gemma 3n model...")
|
| 41 |
+
GEMMA_PATH = "google/gemma-3n-e2b-it"
|
| 42 |
+
|
| 43 |
+
# Load configuration
|
| 44 |
+
config = AutoConfig.from_pretrained(GEMMA_PATH, trust_remote_code=True)
|
| 45 |
+
print("β
Config loaded")
|
| 46 |
+
|
| 47 |
+
# Load processor
|
| 48 |
+
processor = AutoProcessor.from_pretrained(GEMMA_PATH, trust_remote_code=True)
|
| 49 |
+
print("β
Processor loaded")
|
| 50 |
+
|
| 51 |
+
# Load model
|
| 52 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
| 53 |
+
GEMMA_PATH,
|
| 54 |
+
config=config,
|
| 55 |
+
torch_dtype="auto",
|
| 56 |
+
device_map="auto",
|
| 57 |
+
trust_remote_code=True
|
| 58 |
+
)
|
| 59 |
+
print("β
Model loaded successfully!")
|
| 60 |
+
|
| 61 |
+
# Set up compilation fix
|
| 62 |
+
import torch._dynamo
|
| 63 |
+
torch._dynamo.config.suppress_errors = True
|
| 64 |
+
|
| 65 |
+
# Initialize OCR
|
| 66 |
+
try:
|
| 67 |
+
import easyocr
|
| 68 |
+
ocr_reader = easyocr.Reader(['en'], gpu=False, verbose=False)
|
| 69 |
+
print("β
EasyOCR initialized")
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"β οΈ EasyOCR not available: {e}")
|
| 72 |
+
ocr_reader = None
|
| 73 |
+
|
| 74 |
+
return True
|
| 75 |
+
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"β Model loading failed: {e}")
|
| 78 |
+
return False
|
| 79 |
+
|
| 80 |
+
def generate_soap_note(text):
|
| 81 |
+
"""Generate SOAP note using Gemma 3n"""
|
| 82 |
+
if model is None or processor is None:
|
| 83 |
+
return "β Model not loaded. Please wait for initialization."
|
| 84 |
+
|
| 85 |
+
soap_prompt = f"""You are a medical AI assistant. Convert the following medical notes into a properly formatted SOAP note.
|
| 86 |
+
|
| 87 |
+
Medical notes:
|
| 88 |
+
{text}
|
| 89 |
+
|
| 90 |
+
Please format as:
|
| 91 |
+
S - SUBJECTIVE: (chief complaint, history of present illness, past medical history, medications, allergies)
|
| 92 |
+
O - OBJECTIVE: (vital signs, physical examination findings)
|
| 93 |
+
A - ASSESSMENT: (diagnosis/clinical impression)
|
| 94 |
+
P - PLAN: (treatment plan, follow-up instructions)
|
| 95 |
+
|
| 96 |
+
Generate a complete, professional SOAP note:"""
|
| 97 |
+
|
| 98 |
+
messages = [{
|
| 99 |
+
"role": "system",
|
| 100 |
+
"content": [{"type": "text", "text": "You are an expert medical AI assistant specialized in creating SOAP notes from medical documentation."}]
|
| 101 |
+
}, {
|
| 102 |
+
"role": "user",
|
| 103 |
+
"content": [{"type": "text", "text": soap_prompt}]
|
| 104 |
+
}]
|
| 105 |
+
|
| 106 |
+
try:
|
| 107 |
+
inputs = processor.apply_chat_template(
|
| 108 |
+
messages,
|
| 109 |
+
add_generation_prompt=True,
|
| 110 |
+
tokenize=True,
|
| 111 |
+
return_dict=True,
|
| 112 |
+
return_tensors="pt"
|
| 113 |
+
).to(model.device)
|
| 114 |
+
|
| 115 |
+
input_len = inputs["input_ids"].shape[-1]
|
| 116 |
+
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
outputs = model.generate(
|
| 119 |
+
**inputs,
|
| 120 |
+
max_new_tokens=400,
|
| 121 |
+
do_sample=True,
|
| 122 |
+
temperature=0.1,
|
| 123 |
+
top_p=0.95,
|
| 124 |
+
pad_token_id=processor.tokenizer.eos_token_id,
|
| 125 |
+
disable_compile=True
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
response = processor.batch_decode(
|
| 129 |
+
outputs[:, input_len:],
|
| 130 |
+
skip_special_tokens=True
|
| 131 |
+
)[0].strip()
|
| 132 |
+
|
| 133 |
+
return response
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
return f"β SOAP generation failed: {str(e)}"
|
| 137 |
+
|
| 138 |
+
def extract_text_from_image(image):
|
| 139 |
+
"""Extract text using EasyOCR"""
|
| 140 |
+
if ocr_reader is None:
|
| 141 |
+
return "β OCR not available"
|
| 142 |
+
|
| 143 |
+
try:
|
| 144 |
+
if hasattr(image, 'convert'):
|
| 145 |
+
image = image.convert('RGB')
|
| 146 |
+
img_array = np.array(image)
|
| 147 |
+
|
| 148 |
+
results = ocr_reader.readtext(img_array, detail=0, paragraph=True)
|
| 149 |
+
if results:
|
| 150 |
+
return ' '.join(results).strip()
|
| 151 |
+
else:
|
| 152 |
+
return "β No text detected in image"
|
| 153 |
+
|
| 154 |
+
except Exception as e:
|
| 155 |
+
return f"β OCR failed: {str(e)}"
|
| 156 |
+
|
| 157 |
+
def process_medical_input(image, text):
|
| 158 |
+
"""Main processing function for the Gradio interface"""
|
| 159 |
+
|
| 160 |
+
if image is not None and text.strip():
|
| 161 |
+
return "β οΈ Please provide either an image OR text, not both.", ""
|
| 162 |
+
|
| 163 |
+
if image is not None:
|
| 164 |
+
# Process image
|
| 165 |
+
print("π Extracting text from image...")
|
| 166 |
+
extracted_text = extract_text_from_image(image)
|
| 167 |
+
|
| 168 |
+
if extracted_text.startswith('β'):
|
| 169 |
+
return extracted_text, ""
|
| 170 |
+
|
| 171 |
+
print("π€ Generating SOAP note...")
|
| 172 |
+
soap_note = generate_soap_note(extracted_text)
|
| 173 |
+
|
| 174 |
+
return extracted_text, soap_note
|
| 175 |
+
|
| 176 |
+
elif text.strip():
|
| 177 |
+
# Process text directly
|
| 178 |
+
print("π€ Generating SOAP note from text...")
|
| 179 |
+
soap_note = generate_soap_note(text.strip())
|
| 180 |
+
return text.strip(), soap_note
|
| 181 |
+
|
| 182 |
+
else:
|
| 183 |
+
return "β Please provide either an image or text input.", ""
|
| 184 |
+
|
| 185 |
+
def create_demo():
|
| 186 |
+
"""Create the Gradio demo interface"""
|
| 187 |
+
|
| 188 |
+
# Sample text for demonstration
|
| 189 |
+
sample_text = """Patient: John Smith, 45yo male
|
| 190 |
+
CC: Chest pain
|
| 191 |
+
Vitals: BP 140/90, HR 88, RR 16, O2 98%, Temp 98.6F
|
| 192 |
+
HPI: Patient reports crushing chest pain x 2 hours, radiating to left arm
|
| 193 |
+
PMH: HTN, DM Type 2
|
| 194 |
+
Current Meds: Lisinopril 10mg daily, Metformin 500mg BID
|
| 195 |
+
PE: Diaphoretic, anxious appearance
|
| 196 |
+
EKG: ST elevation in leads II, III, aVF"""
|
| 197 |
+
|
| 198 |
+
with gr.Blocks(title="Medical OCR SOAP Generator", theme=gr.themes.Soft()) as demo:
|
| 199 |
+
|
| 200 |
+
gr.Markdown("""
|
| 201 |
+
# π₯ Medical OCR SOAP Generator
|
| 202 |
+
### Powered by Gemma 3n - Convert handwritten medical notes to professional SOAP format
|
| 203 |
+
|
| 204 |
+
**Instructions:**
|
| 205 |
+
- **Option 1:** Upload an image of handwritten medical notes
|
| 206 |
+
- **Option 2:** Enter medical text directly
|
| 207 |
+
- The system will generate a properly formatted SOAP note
|
| 208 |
+
|
| 209 |
+
β οΈ **Note:** First generation may take ~60-90 seconds as the model loads
|
| 210 |
+
""")
|
| 211 |
+
|
| 212 |
+
with gr.Row():
|
| 213 |
+
with gr.Column():
|
| 214 |
+
image_input = gr.Image(
|
| 215 |
+
type="pil",
|
| 216 |
+
label="π· Upload Medical Image",
|
| 217 |
+
height=300
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
text_input = gr.Textbox(
|
| 221 |
+
label="π Or Enter Medical Text",
|
| 222 |
+
placeholder=sample_text,
|
| 223 |
+
lines=8,
|
| 224 |
+
max_lines=15
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
submit_btn = gr.Button(
|
| 228 |
+
"Generate SOAP Note",
|
| 229 |
+
variant="primary",
|
| 230 |
+
size="lg"
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
with gr.Column():
|
| 234 |
+
extracted_output = gr.Textbox(
|
| 235 |
+
label="π Extracted/Input Text",
|
| 236 |
+
lines=6,
|
| 237 |
+
max_lines=10
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
soap_output = gr.Textbox(
|
| 241 |
+
label="π₯ Generated SOAP Note",
|
| 242 |
+
lines=12,
|
| 243 |
+
max_lines=20
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Example section
|
| 247 |
+
gr.Markdown("### π Quick Test Example")
|
| 248 |
+
example_btn = gr.Button("Try Sample Medical Text", variant="secondary")
|
| 249 |
+
|
| 250 |
+
def load_example():
|
| 251 |
+
return sample_text, None
|
| 252 |
+
|
| 253 |
+
example_btn.click(
|
| 254 |
+
load_example,
|
| 255 |
+
outputs=[text_input, image_input]
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# Process function
|
| 259 |
+
submit_btn.click(
|
| 260 |
+
process_medical_input,
|
| 261 |
+
inputs=[image_input, text_input],
|
| 262 |
+
outputs=[extracted_output, soap_output]
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
gr.Markdown("""
|
| 266 |
+
---
|
| 267 |
+
**About:** This application uses Google's Gemma 3n model for medical text understanding and EasyOCR for handwriting recognition.
|
| 268 |
+
All processing is done locally for HIPAA compliance.
|
| 269 |
+
|
| 270 |
+
**Competition Entry:** Medical AI Innovation Challenge 2024
|
| 271 |
+
""")
|
| 272 |
+
|
| 273 |
+
return demo
|
| 274 |
+
|
| 275 |
+
# Initialize the application
|
| 276 |
+
if __name__ == "__main__":
|
| 277 |
+
print("π Starting Medical OCR SOAP Generator...")
|
| 278 |
+
|
| 279 |
+
# Load model
|
| 280 |
+
model_loaded = load_model()
|
| 281 |
+
|
| 282 |
+
if model_loaded:
|
| 283 |
+
print("β
All systems ready!")
|
| 284 |
+
demo = create_demo()
|
| 285 |
+
demo.launch(
|
| 286 |
+
share=True,
|
| 287 |
+
server_name="0.0.0.0",
|
| 288 |
+
server_port=7860
|
| 289 |
+
)
|
| 290 |
+
else:
|
| 291 |
+
print("β Failed to load model. Creating fallback demo...")
|
| 292 |
+
|
| 293 |
+
def fallback_demo():
|
| 294 |
+
return "β Model loading failed. Please check the logs.", "β Model not available."
|
| 295 |
+
|
| 296 |
+
demo = gr.Interface(
|
| 297 |
+
fn=fallback_demo,
|
| 298 |
+
inputs=[
|
| 299 |
+
gr.Image(type="pil", label="Upload Medical Image"),
|
| 300 |
+
gr.Textbox(label="Enter Medical Text", lines=5)
|
| 301 |
+
],
|
| 302 |
+
outputs=[
|
| 303 |
+
gr.Textbox(label="Status"),
|
| 304 |
+
gr.Textbox(label="Error Message")
|
| 305 |
+
],
|
| 306 |
+
title="β Medical OCR - Model Loading Failed"
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|