Bonosa2 commited on
Commit
350c7cd
Β·
verified Β·
1 Parent(s): c0b391c

Delete readme.md

Browse files
Files changed (1) hide show
  1. readme.md +0 -335
readme.md DELETED
@@ -1,335 +0,0 @@
1
- # πŸ₯ AI SOAP Note Generator for Google Colab
2
-
3
- > Transform unstructured medical notes into professional SOAP documentation using Google's Gemma 3N model - **Optimized for Google Colab**
4
-
5
- [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/your-notebook-link)
6
-
7
- ## πŸ“‹ Overview
8
-
9
- The AI SOAP Note Generator is an intelligent medical documentation tool that converts informal doctor's notes, patient encounters, and clinical observations into structured SOAP (Subjective, Objective, Assessment, Plan) format. This tool leverages Google's Gemma 3N language model and runs seamlessly in Google Colab with GPU acceleration.
10
-
11
- ## ✨ Features
12
-
13
- - **πŸš€ Google Colab Ready**: No local setup required - runs entirely in the cloud
14
- - **⚑ GPU Acceleration**: Leverages Colab's free GPU/TPU for fast processing
15
- - **🧠 Gemma 3N Integration**: Uses Google's latest medical-aware language model
16
- - **πŸ“± Multiple Interfaces**:
17
- - Interactive Jupyter widgets
18
- - Modern Gradio web interface
19
- - Direct function calls
20
- - **πŸ“ File Support**: Upload .txt files directly in Colab
21
- - **🎯 Pre-loaded Examples**: Built-in medical scenarios for immediate testing
22
- - **πŸ”— Shareable Links**: Generate public links to share your interface
23
-
24
- ## πŸš€ Quick Start in Google Colab
25
-
26
- ### 1. Open the Notebook
27
- Click the "Open in Colab" badge above or create a new notebook in [Google Colab](https://colab.research.google.com/)
28
-
29
- ### 2. Set Runtime to GPU (Recommended)
30
- ```
31
- Runtime β†’ Change runtime type β†’ Hardware accelerator β†’ GPU
32
- ```
33
-
34
- ### 3. Install Dependencies
35
- Run this cell first:
36
- ```python
37
- # Install required packages
38
- !pip install -q gradio torch transformers accelerate bitsandbytes
39
- !pip install -q ipywidgets
40
-
41
- # Import libraries
42
- import gradio as gr
43
- import torch
44
- from transformers import pipeline
45
- import ipywidgets as widgets
46
- from IPython.display import display, HTML
47
- ```
48
-
49
- ### 4. Run All Cells
50
- Execute the notebook cells in order to:
51
- - Load the Gemma 3N model
52
- - Set up the interface
53
- - Start generating SOAP notes
54
-
55
- ### 5. Use the Interface
56
- - **Gradio Interface**: Click the public URL to access the web interface
57
- - **Colab Widgets**: Use the interactive widgets directly in the notebook
58
-
59
- ## πŸ“± Interface Options
60
-
61
- ### Option 1: Gradio Web Interface (Recommended)
62
- ```python
63
- # Launches a web interface with public sharing
64
- gradio_interface.launch(share=True)
65
- ```
66
- **Benefits:**
67
- - Modern, responsive design
68
- - Public shareable links
69
- - Mobile-friendly
70
- - Copy-to-clipboard functionality
71
-
72
- ### Option 2: Jupyter Widgets
73
- ```python
74
- # Interactive widgets within the notebook
75
- display(main_interface)
76
- ```
77
- **Benefits:**
78
- - Runs directly in Colab
79
- - No external links needed
80
- - Integrated with notebook workflow
81
-
82
- ## πŸ”§ Colab-Specific Setup
83
-
84
- ### GPU Configuration
85
- ```python
86
- # Check GPU availability
87
- import torch
88
- print(f"CUDA available: {torch.cuda.is_available()}")
89
- print(f"GPU device: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None'}")
90
-
91
- # Configure for Colab GPU
92
- device = "cuda" if torch.cuda.is_available() else "cpu"
93
- model_config = {
94
- "device_map": "auto",
95
- "torch_dtype": torch.float16 if device == "cuda" else torch.float32
96
- }
97
- ```
98
-
99
- ### File Upload in Colab
100
- ```python
101
- # Method 1: Direct file upload
102
- from google.colab import files
103
- uploaded = files.upload()
104
-
105
- # Method 2: Google Drive integration
106
- from google.colab import drive
107
- drive.mount('/content/drive')
108
- ```
109
-
110
- ### Save Results to Drive
111
- ```python
112
- # Save generated SOAP notes to Google Drive
113
- def save_to_drive(soap_note, filename):
114
- with open(f'/content/drive/MyDrive/{filename}', 'w') as f:
115
- f.write(soap_note)
116
- print(f"βœ… Saved to Google Drive: {filename}")
117
- ```
118
-
119
- ## πŸ“ Usage Examples
120
-
121
- ### Example 1: Quick Test
122
- ```python
123
- # Test with example data
124
- test_note = """
125
- Patient: 45yo male with chest pain x2 hours
126
- Sharp substernal pain 7/10, radiates to left arm
127
- SOB, diaphoresis, no nausea
128
- Vitals: BP 150/90, HR 110, O2 96%
129
- Anxious, diaphoretic appearance
130
- """
131
-
132
- soap_result = generate_soap_note(test_note)
133
- print(soap_result)
134
- ```
135
-
136
- ### Example 2: File Processing
137
- ```python
138
- # Upload and process medical files
139
- from google.colab import files
140
- uploaded_files = files.upload()
141
-
142
- for filename, content in uploaded_files.items():
143
- medical_text = content.decode('utf-8')
144
- soap_note = generate_soap_note(medical_text)
145
-
146
- # Save result
147
- output_filename = f"SOAP_{filename}"
148
- with open(output_filename, 'w') as f:
149
- f.write(soap_note)
150
-
151
- # Download result
152
- files.download(output_filename)
153
- ```
154
-
155
- ## 🎯 Pre-loaded Medical Examples
156
-
157
- The notebook includes three clinical scenarios:
158
-
159
- 1. **Chest Pain Case**: Acute coronary syndrome workup
160
- 2. **Diabetes Case**: New onset diabetes mellitus
161
- 3. **Pediatric Case**: Streptococcal pharyngitis
162
-
163
- Click any example button to load and test immediately.
164
-
165
- ## πŸ” Model Information
166
-
167
- ### Gemma 3N Configuration
168
- ```python
169
- model_name = "google/gemma-3n-7b" # Adjust based on availability
170
- tokenizer_config = {
171
- "max_length": 2048,
172
- "temperature": 0.7,
173
- "do_sample": True
174
- }
175
- ```
176
-
177
- ### Memory Optimization for Colab
178
- ```python
179
- # For Colab's memory constraints
180
- torch.cuda.empty_cache()
181
- model = model.half() # Use 16-bit precision
182
- ```
183
-
184
- ## ⚠️ Colab-Specific Considerations
185
-
186
- ### Runtime Limitations
187
- - **12-hour session limit**: Save work frequently
188
- - **GPU quota**: Free tier has daily limits
189
- - **Memory constraints**: ~12-15GB RAM available
190
-
191
- ### Best Practices
192
- 1. **Save frequently**: Download important results
193
- 2. **Use GPU wisely**: Enable only when needed
194
- 3. **Monitor resources**: Check RAM/GPU usage
195
- 4. **Backup notebooks**: Save to Drive regularly
196
-
197
- ## πŸ› οΈ Troubleshooting in Colab
198
-
199
- ### Common Issues
200
-
201
- **"Runtime disconnected"**
202
- ```python
203
- # Prevent disconnection
204
- import time
205
- while True:
206
- time.sleep(60) # Keep session alive
207
- ```
208
-
209
- **"Out of GPU memory"**
210
- ```python
211
- # Clear GPU memory
212
- torch.cuda.empty_cache()
213
- # Restart runtime if needed: Runtime β†’ Restart runtime
214
- ```
215
-
216
- **"Package not found"**
217
- ```python
218
- # Reinstall packages
219
- !pip install --upgrade gradio transformers torch
220
- ```
221
-
222
- **Gradio interface not loading**
223
- ```python
224
- # Try without share link
225
- gradio_interface.launch(share=False, debug=True)
226
- ```
227
-
228
- ## πŸ“Š Performance Tips
229
-
230
- ### Optimize for Colab
231
- ```python
232
- # Batch processing for multiple notes
233
- def batch_process_notes(note_list):
234
- results = []
235
- for i, note in enumerate(note_list):
236
- print(f"Processing {i+1}/{len(note_list)}")
237
- soap_note = generate_soap_note(note)
238
- results.append(soap_note)
239
- return results
240
- ```
241
-
242
- ### Monitor Resources
243
- ```python
244
- # Check memory usage
245
- !nvidia-smi
246
- !cat /proc/meminfo | grep MemAvailable
247
- ```
248
-
249
- ## πŸ”— Sharing Your Work
250
-
251
- ### Share Notebook
252
- 1. **File β†’ Save a copy in Drive**
253
- 2. **Share β†’ Get shareable link**
254
- 3. Set permissions to "Anyone with the link"
255
-
256
- ### Share Interface
257
- ```python
258
- # Gradio creates public URLs automatically
259
- gradio_interface.launch(share=True)
260
- # Copy the public URL to share with others
261
- ```
262
-
263
- ## πŸ“‹ Colab Notebook Structure
264
-
265
- ```
266
- πŸ““ SOAP_Note_Generator.ipynb
267
- β”œβ”€β”€ πŸ”§ Setup & Installation
268
- β”œβ”€β”€ 🧠 Model Loading
269
- β”œβ”€β”€ πŸ“ SOAP Generation Function
270
- β”œβ”€β”€ 🎨 Interface Creation
271
- β”‚ β”œβ”€β”€ Gradio Web Interface
272
- β”‚ └── Jupyter Widgets
273
- β”œβ”€β”€ πŸ“‹ Example Cases
274
- β”œβ”€β”€ πŸš€ Launch Interface
275
- └── πŸ’Ύ Save/Export Functions
276
- ```
277
-
278
- ## πŸ“„ Medical Disclaimer
279
-
280
- > **βš•οΈ IMPORTANT**: This tool is for **educational and research purposes only**
281
- > - Not intended for actual clinical use
282
- > - Always consult qualified healthcare professionals
283
- > - Remove patient identifiers before processing
284
- > - Comply with HIPAA and privacy regulations
285
-
286
- ## πŸ†˜ Getting Help
287
-
288
- ### In Colab:
289
- 1. Use `!pip list` to check installed packages
290
- 2. Check GPU with `!nvidia-smi`
291
- 3. Restart runtime if needed: `Runtime β†’ Restart runtime`
292
-
293
- ### Common Commands:
294
- ```python
295
- # Debug mode
296
- import logging
297
- logging.basicConfig(level=logging.DEBUG)
298
-
299
- # Check versions
300
- print(f"Torch: {torch.__version__}")
301
- print(f"Transformers: {transformers.__version__}")
302
- print(f"Gradio: {gr.__version__}")
303
- ```
304
-
305
- ## πŸš€ Advanced Features
306
-
307
- ### Google Drive Integration
308
- ```python
309
- # Mount Google Drive
310
- from google.colab import drive
311
- drive.mount('/content/drive')
312
-
313
- # Save notebooks and results automatically
314
- import shutil
315
- shutil.copy('generated_soap_notes.txt', '/content/drive/MyDrive/')
316
- ```
317
-
318
- ### Scheduled Processing
319
- ```python
320
- # Process notes at scheduled intervals
321
- import schedule
322
- import time
323
-
324
- def scheduled_processing():
325
- # Your processing logic here
326
- pass
327
-
328
- schedule.every(30).minutes.do(scheduled_processing)
329
- ```
330
-
331
- ---
332
-
333
- **πŸ”¬ Ready to start generating professional SOAP notes in Google Colab!**
334
-
335
- Click "Open in Colab" above and run all cells to get started immediately.