Scribbled-docs-notes / tests /test_real_functionality.py
Bonosa2's picture
Create test_real_functionality.py
79adcde verified
# tests/test_real_functionality.py
import pytest
import sys
import os
from PIL import Image
import numpy as np
# Add parent directory to import app
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Import actual functions from app.py
try:
from app import (
preprocess_image_for_ocr,
clean_extracted_text,
gradio_generate_soap
)
APP_AVAILABLE = True
except ImportError:
APP_AVAILABLE = False
@pytest.mark.skipif(not APP_AVAILABLE, reason="app.py not available")
class TestRealFunctionality:
"""Test actual app functions (not mocks)"""
def test_clean_extracted_text_real(self):
"""Test the actual clean_extracted_text function"""
dirty_text = " Line 1 \n\n Line 2 with | pipes \n \n Line_3 "
clean_text = clean_extracted_text(dirty_text)
assert "Line 1" in clean_text
assert "Line 2 with pipes" in clean_text
assert "Line 3" in clean_text
assert "|" not in clean_text
def test_preprocess_image_for_ocr_real(self):
"""Test actual image preprocessing"""
# Create test image
test_image = Image.new('RGB', (400, 300), color='white')
# Test the real function
result = preprocess_image_for_ocr(test_image)
assert isinstance(result, np.ndarray)
assert len(result.shape) == 2 # Should be grayscale
assert result.shape[0] >= 300 # Height should be at least 300
assert result.shape[1] >= 300 # Width should be at least 300
def test_gradio_generate_soap_empty_input_real(self):
"""Test actual Gradio function with empty input"""
result = gradio_generate_soap("", None)
assert "❌" in result or "Please enter" in result
def test_gradio_generate_soap_text_input_real(self):
"""Test actual Gradio function with text input"""
medical_text = """
Patient: John Smith, 45-year-old male
Chief Complaint: Chest pain for 2 hours
History: Sharp chest pain, 7/10 intensity
Physical Exam: VS: BP 150/90, HR 110
Assessment: Chest pain evaluation needed
Plan: EKG, cardiac enzymes
"""
# This will fail if generate_soap_note function isn't loaded
# but that's good - it tells us the real state of the app
result = gradio_generate_soap(medical_text, None)
# Check if it's an error message or actual SOAP content
if "❌" not in result:
# Should contain SOAP sections if successful
assert any(section in result.upper() for section in
["SUBJECTIVE", "OBJECTIVE", "ASSESSMENT", "PLAN"])
# tests/test_integration_real.py
import pytest
import sys
import os
from PIL import Image, ImageDraw, ImageFont
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
class TestRealIntegration:
"""Test real integration without mocks"""
def test_image_with_text_creation(self):
"""Test creating an image with text for OCR testing"""
# Create a real image with text
img = Image.new('RGB', (800, 600), color='white')
draw = ImageDraw.Draw(img)
# Add medical text to image
medical_text = [
"Patient: John Doe",
"Age: 45 years old",
"Chief Complaint: Chest pain",
"Vital Signs: BP 140/90",
"Assessment: Further evaluation needed"
]
y_position = 50
for line in medical_text:
draw.text((50, y_position), line, fill='black')
y_position += 40
# Verify image was created
assert img.size == (800, 600)
assert img.mode == 'RGB'
# Convert to array to verify content
img_array = np.array(img)
# Should not be all white (has text)
assert not np.all(img_array == 255)
def test_examples_dictionary_structure(self):
"""Test that examples dictionary has proper structure"""
# Test the actual examples from the app
try:
from app import examples
# Check required keys exist
required_keys = ['chest_pain', 'diabetes', 'pediatric']
for key in required_keys:
assert key in examples
# Check content quality
for key, content in examples.items():
assert len(content) > 100 # Substantial content
assert "Patient:" in content
assert any(word in content.lower() for word in
["complaint", "history", "exam", "assessment", "plan"])
except ImportError:
pytest.skip("examples not available in app.py")
def test_file_extensions_validation(self):
"""Test file extension validation logic"""
allowed_extensions = ['.png', '.jpg', '.jpeg', '.txt', '.doc', '.docx', '.pdf']
# Test valid extensions
valid_files = ['image.png', 'document.pdf', 'notes.txt', 'scan.jpg']
for filename in valid_files:
file_ext = os.path.splitext(filename.lower())[1]
assert file_ext in allowed_extensions
# Test invalid extensions
invalid_files = ['file.xyz', 'document.zip', 'image.bmp']
for filename in invalid_files:
file_ext = os.path.splitext(filename.lower())[1]
assert file_ext not in allowed_extensions
# tests/test_error_scenarios_real.py
import pytest
import sys
import os
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
class TestRealErrorScenarios:
"""Test real error handling scenarios"""
def test_missing_dependencies_handling(self):
"""Test what happens when dependencies are missing"""
# Test if app handles missing dependencies gracefully
try:
import easyocr
EASYOCR_AVAILABLE = True
except ImportError:
EASYOCR_AVAILABLE = False
try:
import pytesseract
TESSERACT_AVAILABLE = True
except ImportError:
TESSERACT_AVAILABLE = False
# At least one OCR method should be available for the app to work
if not EASYOCR_AVAILABLE and not TESSERACT_AVAILABLE:
pytest.skip("No OCR dependencies available")
def test_torch_availability(self):
"""Test PyTorch availability and device detection"""
import torch
# Test device detection logic
device = "cuda" if torch.cuda.is_available() else "cpu"
assert device in ["cuda", "cpu"]
# Test tensor creation on detected device
test_tensor = torch.tensor([1, 2, 3], dtype=torch.float32)
assert test_tensor is not None
def test_image_format_handling(self):
"""Test handling of different image formats"""
from PIL import Image
# Test RGB image
rgb_img = Image.new('RGB', (100, 100), color='white')
assert rgb_img.mode == 'RGB'
# Test grayscale image
gray_img = Image.new('L', (100, 100), color=128)
assert gray_img.mode == 'L'
# Test RGBA image
rgba_img = Image.new('RGBA', (100, 100), color=(255, 255, 255, 255))
assert rgba_img.mode == 'RGBA'
# tests/test_performance_real.py
import pytest
import time
import sys
import os
from PIL import Image
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
class TestRealPerformance:
"""Test actual performance characteristics"""
def test_image_preprocessing_speed(self):
"""Test image preprocessing performance"""
try:
from app import preprocess_image_for_ocr
# Create test image
test_image = Image.new('RGB', (1000, 800), color='white')
# Time the preprocessing
start_time = time.time()
result = preprocess_image_for_ocr(test_image)
end_time = time.time()
processing_time = end_time - start_time
# Should process reasonably quickly (under 5 seconds)
assert processing_time < 5.0
assert result is not None
except ImportError:
pytest.skip("preprocess_image_for_ocr not available")
def test_text_cleaning_speed(self):
"""Test text cleaning performance"""
try:
from app import clean_extracted_text
# Create large text with lots of cleaning needed
dirty_text = " \n ".join([f"Line {i} with | pipes and _ underscores "
for i in range(1000)])
start_time = time.time()
clean_text = clean_extracted_text(dirty_text)
end_time = time.time()
processing_time = end_time - start_time
# Should clean text quickly (under 1 second)
assert processing_time < 1.0
assert len(clean_text) > 0
assert "|" not in clean_text
except ImportError:
pytest.skip("clean_extracted_text not available")
# tests/test_configuration_real.py
import pytest
import sys
import os
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
class TestRealConfiguration:
"""Test actual app configuration"""
def test_environment_variables(self):
"""Test environment variable handling"""
# Test HF_TOKEN detection
hf_token = os.environ.get('HF_TOKEN') or os.environ.get('HUGGINGFACE_TOKEN')
# If no token, app should handle gracefully
if not hf_token:
# This is fine for testing - app should handle missing tokens
pass
else:
# If token exists, it should be a string
assert isinstance(hf_token, str)
assert len(hf_token) > 10 # Tokens should be substantial
def test_cuda_device_configuration(self):
"""Test CUDA device configuration"""
import torch
# Test device selection logic
cuda_visible = os.environ.get("CUDA_VISIBLE_DEVICES", "")
if cuda_visible == "":
# Should fall back to CPU
expected_device = "cpu"
elif torch.cuda.is_available():
expected_device = "cuda"
else:
expected_device = "cpu"
# Verify device is valid
assert expected_device in ["cuda", "cpu"]
def test_model_configuration(self):
"""Test model configuration parameters"""
# Test model ID
model_id = "google/gemma-3n-e2b-it"
assert isinstance(model_id, str)
assert "/" in model_id # Should be in format "org/model"
# Test model parameters that would be used
max_new_tokens = 512
temperature = 0.3
assert isinstance(max_new_tokens, int)
assert max_new_tokens > 0
assert isinstance(temperature, float)
assert 0 <= temperature <= 1.0