File size: 10,497 Bytes
28f944e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import pytest

class TestIntegration:
    """Integration tests for the complete workflow"""
    
    def test_complete_workflow_text_input(self, sample_medical_text):
        """Test complete workflow from text input to SOAP output"""
        def mock_complete_workflow(medical_text):
            # Step 1: Validate input
            if not medical_text.strip():
                return "❌ No input provided"
            
            # Step 2: Process text (mock preprocessing)
            processed_text = medical_text.strip()
            
            # Step 3: Generate SOAP (mocked)
            soap_sections = [
                "SUBJECTIVE:",
                "Patient reports chest pain for 2 hours.",
                "",
                "OBJECTIVE:", 
                "Vital signs show elevated blood pressure.",
                "",
                "ASSESSMENT:",
                "Acute chest pain, rule out cardiac causes.",
                "",
                "PLAN:",
                "Order EKG and cardiac enzymes."
            ]
            
            # Step 4: Format output
            result = "\n".join(soap_sections)
            result += f"\n\n--- Processing Summary ---"
            result += f"\nProcessed {len(medical_text)} characters of medical text."
            result += f"\nGenerated SOAP note with {len(soap_sections)} sections."
            
            return result
        
        result = mock_complete_workflow(sample_medical_text)
        
        assert "SUBJECTIVE:" in result
        assert "OBJECTIVE:" in result
        assert "ASSESSMENT:" in result
        assert "PLAN:" in result
        assert "Processing Summary" in result
        assert "characters of medical text" in result

    def test_workflow_with_image_and_text(self, sample_medical_text, sample_image):
        """Test workflow with both image and text input"""
        def mock_workflow_with_image(text_input, image_input):
            combined_text = text_input or ""
            
            if image_input is not None:
                # Mock OCR processing
                ocr_text = "Additional findings: Patient appears anxious, diaphoretic"
                if combined_text:
                    combined_text += f"\n\n--- Extracted from image ---\n{ocr_text}"
                else:
                    combined_text = ocr_text
            
            if not combined_text:
                return "❌ No input provided"
            
            # Mock SOAP generation
            sections = ["SUBJECTIVE", "OBJECTIVE", "ASSESSMENT", "PLAN"]
            soap_content = []
            
            for section in sections:
                soap_content.append(f"{section}:")
                soap_content.append(f"Content for {section.lower()} section")
                soap_content.append("")
            
            result = "\n".join(soap_content)
            result += f"\n--- Workflow Summary ---"
            result += f"\nCombined input: {len(combined_text)} characters"
            result += f"\nImage processing: {'Yes' if image_input else 'No'}"
            
            return result
        
        result = mock_workflow_with_image(sample_medical_text, sample_image)
        assert "SUBJECTIVE:" in result
        assert "OBJECTIVE:" in result
        assert "ASSESSMENT:" in result
        assert "PLAN:" in result
        assert "Workflow Summary" in result
        assert "Image processing: Yes" in result

    def test_error_recovery_workflow(self):
        """Test workflow error handling and recovery"""
        def mock_error_recovery_workflow(input_data, simulate_error=False):
            try:
                if simulate_error:
                    raise Exception("Simulated processing error")
                
                if not input_data:
                    return "❌ No input provided"
                
                # Simulate successful processing
                return "βœ… SOAP note generated successfully"
                
            except Exception as e:
                # Error recovery
                error_msg = f"❌ Error occurred: {str(e)}"
                recovery_msg = "\nπŸ’‘ Please try again with different input or check your image quality."
                return error_msg + recovery_msg
        
        # Test normal operation
        result = mock_error_recovery_workflow("Valid input")
        assert "βœ… SOAP note generated successfully" in result
        
        # Test error handling
        result = mock_error_recovery_workflow("Input", simulate_error=True)
        assert "❌ Error occurred:" in result
        assert "πŸ’‘ Please try again" in result
        
        # Test empty input
        result = mock_error_recovery_workflow("")
        assert "❌ No input provided" in result

    def test_performance_workflow(self, sample_medical_text):
        """Test workflow performance characteristics"""
        def mock_performance_workflow(input_text):
            import time
            
            start_time = time.time()
            
            # Simulate processing steps
            steps = [
                "Validating input",
                "Preprocessing text", 
                "Extracting medical entities",
                "Generating SOAP structure",
                "Formatting output"
            ]
            
            processing_log = []
            for i, step in enumerate(steps):
                step_time = time.time()
                processing_log.append(f"Step {i+1}: {step} - {step_time - start_time:.3f}s")
                time.sleep(0.01)  # Simulate processing time
            
            total_time = time.time() - start_time
            
            result = "Generated SOAP Note\n\n"
            result += "--- Performance Log ---\n"
            result += "\n".join(processing_log)
            result += f"\nTotal processing time: {total_time:.3f}s"
            
            return result, total_time
        
        result, processing_time = mock_performance_workflow(sample_medical_text)
        
        assert "Generated SOAP Note" in result
        assert "Performance Log" in result
        assert "Total processing time:" in result
        assert processing_time > 0
        assert processing_time < 1.0  # Should be fast for mocked version

    def test_batch_processing_workflow(self):
        """Test batch processing of multiple medical notes"""
        def mock_batch_workflow(medical_notes_list):
            if not medical_notes_list:
                return "❌ No notes provided for batch processing"
            
            results = []
            
            for i, notes in enumerate(medical_notes_list):
                if not notes.strip():
                    results.append(f"Note {i+1}: ❌ Empty input")
                    continue
                
                # Mock SOAP generation for each note
                soap_result = f"""Note {i+1} - SOAP Generated:
SUBJECTIVE: Patient presentation from note {i+1}
OBJECTIVE: Clinical findings 
ASSESSMENT: Medical diagnosis
PLAN: Treatment approach
"""
                results.append(soap_result)
            
            summary = f"\n--- Batch Summary ---"
            summary += f"\nTotal notes processed: {len(medical_notes_list)}"
            summary += f"\nSuccessful: {len([r for r in results if '❌' not in r])}"
            summary += f"\nFailed: {len([r for r in results if '❌' in r])}"
            
            return "\n".join(results) + summary
        
        # Test batch processing
        notes_batch = [
            "Patient 1: Chest pain complaint",
            "Patient 2: Diabetes follow-up", 
            "",  # Empty note
            "Patient 3: Pediatric fever case"
        ]
        
        result = mock_batch_workflow(notes_batch)
        
        assert "Note 1 - SOAP Generated:" in result
        assert "Note 2 - SOAP Generated:" in result
        assert "Note 3: ❌ Empty input" in result
        assert "Note 4 - SOAP Generated:" in result
        assert "Batch Summary" in result
        assert "Total notes processed: 4" in result
        assert "Successful: 3" in result
        assert "Failed: 1" in result

    def test_gradio_integration(self, sample_medical_text, sample_image):
        """Test Gradio interface integration"""
        def mock_gradio_integration(text_input, image_input, example_selection=None):
            # Simulate Gradio interface behavior
            if example_selection:
                # Load example
                examples = {
                    "chest_pain": "Example chest pain case",
                    "diabetes": "Example diabetes case", 
                    "pediatric": "Example pediatric case"
                }
                text_input = examples.get(example_selection, text_input)
            
            # Process inputs (same as gradio_generate_soap)
            final_text = text_input or ""
            
            if image_input is not None:
                ocr_result = "OCR extracted: Patient vital signs documented"
                if final_text:
                    final_text += f"\n\n--- From Image ---\n{ocr_result}"
                else:
                    final_text = ocr_result
            
            if not final_text:
                return "❌ Please provide input"
            
            # Generate SOAP
            soap_output = f"""πŸ“‹ SOAP NOTE GENERATED

SUBJECTIVE:
{final_text[:100]}...

OBJECTIVE:
Clinical examination findings documented.

ASSESSMENT:  
Medical evaluation completed.

PLAN:
Treatment recommendations provided.

--- Generated via Gradio Interface ---
Input sources: {'Text + Image' if text_input and image_input else 'Text' if text_input else 'Image'}
Processing timestamp: 2025-01-15 10:30:00
"""
            return soap_output
        
        # Test text only
        result = mock_gradio_integration(sample_medical_text, None)
        assert "πŸ“‹ SOAP NOTE GENERATED" in result
        assert "Input sources: Text" in result
        
        # Test image only  
        result = mock_gradio_integration("", sample_image)
        assert "πŸ“‹ SOAP NOTE GENERATED" in result
        assert "From Image" in result
        
        # Test text + image
        result = mock_gradio_integration(sample_medical_text, sample_image)
        assert "Input sources: Text + Image" in result
        
        # Test example selection
        result = mock_gradio_integration("", None, "chest_pain")
        assert "Example chest pain case" in result