Spaces:
Sleeping
Sleeping
File size: 10,497 Bytes
28f944e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import pytest
class TestIntegration:
"""Integration tests for the complete workflow"""
def test_complete_workflow_text_input(self, sample_medical_text):
"""Test complete workflow from text input to SOAP output"""
def mock_complete_workflow(medical_text):
# Step 1: Validate input
if not medical_text.strip():
return "β No input provided"
# Step 2: Process text (mock preprocessing)
processed_text = medical_text.strip()
# Step 3: Generate SOAP (mocked)
soap_sections = [
"SUBJECTIVE:",
"Patient reports chest pain for 2 hours.",
"",
"OBJECTIVE:",
"Vital signs show elevated blood pressure.",
"",
"ASSESSMENT:",
"Acute chest pain, rule out cardiac causes.",
"",
"PLAN:",
"Order EKG and cardiac enzymes."
]
# Step 4: Format output
result = "\n".join(soap_sections)
result += f"\n\n--- Processing Summary ---"
result += f"\nProcessed {len(medical_text)} characters of medical text."
result += f"\nGenerated SOAP note with {len(soap_sections)} sections."
return result
result = mock_complete_workflow(sample_medical_text)
assert "SUBJECTIVE:" in result
assert "OBJECTIVE:" in result
assert "ASSESSMENT:" in result
assert "PLAN:" in result
assert "Processing Summary" in result
assert "characters of medical text" in result
def test_workflow_with_image_and_text(self, sample_medical_text, sample_image):
"""Test workflow with both image and text input"""
def mock_workflow_with_image(text_input, image_input):
combined_text = text_input or ""
if image_input is not None:
# Mock OCR processing
ocr_text = "Additional findings: Patient appears anxious, diaphoretic"
if combined_text:
combined_text += f"\n\n--- Extracted from image ---\n{ocr_text}"
else:
combined_text = ocr_text
if not combined_text:
return "β No input provided"
# Mock SOAP generation
sections = ["SUBJECTIVE", "OBJECTIVE", "ASSESSMENT", "PLAN"]
soap_content = []
for section in sections:
soap_content.append(f"{section}:")
soap_content.append(f"Content for {section.lower()} section")
soap_content.append("")
result = "\n".join(soap_content)
result += f"\n--- Workflow Summary ---"
result += f"\nCombined input: {len(combined_text)} characters"
result += f"\nImage processing: {'Yes' if image_input else 'No'}"
return result
result = mock_workflow_with_image(sample_medical_text, sample_image)
assert "SUBJECTIVE:" in result
assert "OBJECTIVE:" in result
assert "ASSESSMENT:" in result
assert "PLAN:" in result
assert "Workflow Summary" in result
assert "Image processing: Yes" in result
def test_error_recovery_workflow(self):
"""Test workflow error handling and recovery"""
def mock_error_recovery_workflow(input_data, simulate_error=False):
try:
if simulate_error:
raise Exception("Simulated processing error")
if not input_data:
return "β No input provided"
# Simulate successful processing
return "β
SOAP note generated successfully"
except Exception as e:
# Error recovery
error_msg = f"β Error occurred: {str(e)}"
recovery_msg = "\nπ‘ Please try again with different input or check your image quality."
return error_msg + recovery_msg
# Test normal operation
result = mock_error_recovery_workflow("Valid input")
assert "β
SOAP note generated successfully" in result
# Test error handling
result = mock_error_recovery_workflow("Input", simulate_error=True)
assert "β Error occurred:" in result
assert "π‘ Please try again" in result
# Test empty input
result = mock_error_recovery_workflow("")
assert "β No input provided" in result
def test_performance_workflow(self, sample_medical_text):
"""Test workflow performance characteristics"""
def mock_performance_workflow(input_text):
import time
start_time = time.time()
# Simulate processing steps
steps = [
"Validating input",
"Preprocessing text",
"Extracting medical entities",
"Generating SOAP structure",
"Formatting output"
]
processing_log = []
for i, step in enumerate(steps):
step_time = time.time()
processing_log.append(f"Step {i+1}: {step} - {step_time - start_time:.3f}s")
time.sleep(0.01) # Simulate processing time
total_time = time.time() - start_time
result = "Generated SOAP Note\n\n"
result += "--- Performance Log ---\n"
result += "\n".join(processing_log)
result += f"\nTotal processing time: {total_time:.3f}s"
return result, total_time
result, processing_time = mock_performance_workflow(sample_medical_text)
assert "Generated SOAP Note" in result
assert "Performance Log" in result
assert "Total processing time:" in result
assert processing_time > 0
assert processing_time < 1.0 # Should be fast for mocked version
def test_batch_processing_workflow(self):
"""Test batch processing of multiple medical notes"""
def mock_batch_workflow(medical_notes_list):
if not medical_notes_list:
return "β No notes provided for batch processing"
results = []
for i, notes in enumerate(medical_notes_list):
if not notes.strip():
results.append(f"Note {i+1}: β Empty input")
continue
# Mock SOAP generation for each note
soap_result = f"""Note {i+1} - SOAP Generated:
SUBJECTIVE: Patient presentation from note {i+1}
OBJECTIVE: Clinical findings
ASSESSMENT: Medical diagnosis
PLAN: Treatment approach
"""
results.append(soap_result)
summary = f"\n--- Batch Summary ---"
summary += f"\nTotal notes processed: {len(medical_notes_list)}"
summary += f"\nSuccessful: {len([r for r in results if 'β' not in r])}"
summary += f"\nFailed: {len([r for r in results if 'β' in r])}"
return "\n".join(results) + summary
# Test batch processing
notes_batch = [
"Patient 1: Chest pain complaint",
"Patient 2: Diabetes follow-up",
"", # Empty note
"Patient 3: Pediatric fever case"
]
result = mock_batch_workflow(notes_batch)
assert "Note 1 - SOAP Generated:" in result
assert "Note 2 - SOAP Generated:" in result
assert "Note 3: β Empty input" in result
assert "Note 4 - SOAP Generated:" in result
assert "Batch Summary" in result
assert "Total notes processed: 4" in result
assert "Successful: 3" in result
assert "Failed: 1" in result
def test_gradio_integration(self, sample_medical_text, sample_image):
"""Test Gradio interface integration"""
def mock_gradio_integration(text_input, image_input, example_selection=None):
# Simulate Gradio interface behavior
if example_selection:
# Load example
examples = {
"chest_pain": "Example chest pain case",
"diabetes": "Example diabetes case",
"pediatric": "Example pediatric case"
}
text_input = examples.get(example_selection, text_input)
# Process inputs (same as gradio_generate_soap)
final_text = text_input or ""
if image_input is not None:
ocr_result = "OCR extracted: Patient vital signs documented"
if final_text:
final_text += f"\n\n--- From Image ---\n{ocr_result}"
else:
final_text = ocr_result
if not final_text:
return "β Please provide input"
# Generate SOAP
soap_output = f"""π SOAP NOTE GENERATED
SUBJECTIVE:
{final_text[:100]}...
OBJECTIVE:
Clinical examination findings documented.
ASSESSMENT:
Medical evaluation completed.
PLAN:
Treatment recommendations provided.
--- Generated via Gradio Interface ---
Input sources: {'Text + Image' if text_input and image_input else 'Text' if text_input else 'Image'}
Processing timestamp: 2025-01-15 10:30:00
"""
return soap_output
# Test text only
result = mock_gradio_integration(sample_medical_text, None)
assert "π SOAP NOTE GENERATED" in result
assert "Input sources: Text" in result
# Test image only
result = mock_gradio_integration("", sample_image)
assert "π SOAP NOTE GENERATED" in result
assert "From Image" in result
# Test text + image
result = mock_gradio_integration(sample_medical_text, sample_image)
assert "Input sources: Text + Image" in result
# Test example selection
result = mock_gradio_integration("", None, "chest_pain")
assert "Example chest pain case" in result |