File size: 20,665 Bytes
fc51947
 
 
7403c04
ed48c92
 
 
 
 
 
c0531db
fc51947
 
 
 
ed48c92
fc51947
7403c04
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
fc51947
 
 
 
7403c04
 
fc51947
 
 
 
 
 
 
 
 
7403c04
 
fc51947
 
 
 
 
7403c04
fc51947
 
 
7403c04
fc51947
7403c04
fc51947
 
 
 
 
 
 
 
 
 
 
7403c04
 
 
fc51947
 
 
7403c04
fc51947
 
 
7403c04
fc51947
7403c04
fc51947
 
 
 
 
 
 
 
 
 
 
 
7403c04
 
fc51947
7403c04
fc51947
 
 
7403c04
 
 
 
fc51947
7403c04
fc51947
7403c04
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
fc51947
7403c04
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
fc51947
 
 
7403c04
fc51947
 
 
 
7403c04
fc51947
 
7403c04
fc51947
 
7403c04
 
fc51947
7403c04
fc51947
 
 
 
 
 
7403c04
 
fc51947
 
 
 
 
7403c04
 
fc51947
 
7403c04
fc51947
 
 
 
 
7403c04
fc51947
 
 
 
7403c04
 
fc51947
 
 
7403c04
 
 
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
 
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
fc51947
 
7403c04
 
fc51947
 
 
 
 
 
 
 
7403c04
fc51947
 
7403c04
 
fc51947
7403c04
fc51947
 
 
7403c04
fc51947
7403c04
 
 
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
fc51947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7403c04
 
 
fc51947
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
# -*- coding: utf-8 -*-
# πŸ₯ Gemma 3N SOAP Note Generator with Unsloth
# Optimized for offline medical documentation

import torch
import gradio as gr
import io
import base64
from datetime import datetime
import os
import easyocr
from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np
import psutil

# Import Unsloth for optimized Gemma 3n
try:
    from unsloth import FastModel
    print("βœ… Unsloth imported successfully")
    UNSLOTH_AVAILABLE = True
except ImportError:
    print("❌ Unsloth not available. Install with: pip install unsloth")
    UNSLOTH_AVAILABLE = False

# Device setup
def setup_device():
    device = "cuda" if torch.cuda.is_available() else "cpu"
    print(f"πŸ–₯️  Using device: {device}")
    
    if torch.cuda.is_available():
        print(f"πŸš€ GPU: {torch.cuda.get_device_name(0)}")
        print(f"πŸ’Ύ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
    else:
        print("⚠️  Running on CPU - will be slower but works offline")
    
    return device

# Load Unsloth Gemma 3n model
def load_unsloth_gemma_model(device):
    """Load optimized Gemma 3n model using Unsloth"""
    
    if not UNSLOTH_AVAILABLE:
        print("❌ Unsloth not available. Using fallback method.")
        return load_fallback_model()
    
    try:
        print("πŸ“‘ Loading Unsloth-optimized Gemma 3n model...")
        
        # Use the 4-bit quantized model for efficiency
        model_name = "unsloth/gemma-3n-E4B-it-unsloth-bnb-4bit"
        
        print(f"πŸ”§ Loading model: {model_name}")
        
        # Load with Unsloth optimizations
        model, tokenizer = FastModel.from_pretrained(
            model_name=model_name,
            dtype=None,  # Auto-detect
            max_seq_length=1024,  # Good for medical notes
            load_in_4bit=True,   # 4-bit quantization for efficiency
            full_finetuning=False,
        )
        
        print("βœ… Unsloth Gemma 3n model loaded successfully!")
        print(f"πŸ“Š Model: {model_name}")
        print(f"πŸ’Ύ Memory optimized with 4-bit quantization")
        print(f"🎯 Ready for medical SOAP note generation!")
        
        return model, tokenizer
        
    except Exception as e:
        print(f"❌ Error loading Unsloth model: {e}")
        print("πŸ’‘ Trying fallback model...")
        return load_fallback_model()

def load_fallback_model():
    """Fallback model if Unsloth fails"""
    try:
        from transformers import AutoTokenizer, AutoModelForCausalLM
        
        print("πŸ”„ Loading fallback model...")
        model_name = "microsoft/DialoGPT-medium"
        
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            low_cpu_mem_usage=True
        )
        
        print("βœ… Fallback model loaded!")
        return model, tokenizer
        
    except Exception as e:
        print(f"❌ Fallback model also failed: {e}")
        return None, None

# Enhanced SOAP Note Generation with Gemma 3n
def generate_soap_note_gemma(doctor_notes, model=None, tokenizer=None, include_timestamp=True):
    """Generate SOAP note using Gemma 3n model"""
    
    if not doctor_notes.strip():
        return "❌ Please enter some medical notes to process."
    
    if model is None or tokenizer is None:
        return generate_template_soap(doctor_notes, include_timestamp)
    
    # Medical-specific prompt for Gemma 3n
    prompt = f"""<bos><start_of_turn>user
You are a medical AI assistant specialized in creating SOAP notes. Convert the following unstructured medical notes into a professional SOAP note format.

Medical Notes:
{doctor_notes}

Please create a structured SOAP note with these sections:
- SUBJECTIVE: Patient's reported symptoms, complaints, and relevant history
- OBJECTIVE: Physical examination findings, vital signs, and observable data  
- ASSESSMENT: Clinical diagnosis, differential diagnosis, and medical reasoning
- PLAN: Treatment recommendations, medications, tests, and follow-up care

<end_of_turn>
<start_of_turn>model
SOAP NOTE:

SUBJECTIVE:"""

    try:
        # Tokenize input
        inputs = tokenizer(
            prompt, 
            return_tensors="pt", 
            truncation=True, 
            max_length=512,
            padding=True
        )
        
        # Generate with optimized settings for medical text
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=400,
                temperature=0.2,  # Lower temperature for medical precision
                top_p=0.9,
                do_sample=True,
                repetition_penalty=1.1,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
        
        # Decode response
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract only the SOAP note part
        if "SOAP NOTE:" in generated_text:
            soap_response = generated_text.split("SOAP NOTE:")[1].strip()
        else:
            soap_response = generated_text[len(prompt):].strip()
        
        # Clean up response
        soap_response = clean_soap_response(soap_response)
        
        # Add professional header
        if include_timestamp:
            timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            header = f"""πŸ“‹ SOAP NOTE - Generated by Gemma 3n
πŸ• Timestamp: {timestamp}
πŸ€– Model: Unsloth-optimized Gemma 3n (4-bit quantized)
πŸ”’ Processed locally on device
πŸ₯ Medical Documentation Assistant

{'='*60}
"""
            return header + soap_response
        
        return soap_response
        
    except Exception as e:
        print(f"❌ Generation error: {e}")
        return generate_template_soap(doctor_notes, include_timestamp)

def clean_soap_response(response):
    """Clean and format SOAP note response"""
    
    # Remove any incomplete sentences at the end
    lines = response.split('\n')
    cleaned_lines = []
    
    for line in lines:
        line = line.strip()
        if line:
            # Ensure proper SOAP section headers
            if line.upper().startswith(('SUBJECTIVE', 'OBJECTIVE', 'ASSESSMENT', 'PLAN')):
                if not line.endswith(':'):
                    line += ':'
                cleaned_lines.append(f"\n{line}")
            else:
                cleaned_lines.append(line)
    
    return '\n'.join(cleaned_lines).strip()

# Template-based SOAP generation (enhanced fallback)
def generate_template_soap(doctor_notes, include_timestamp=True):
    """Enhanced template-based SOAP note generation"""
    
    notes_lower = doctor_notes.lower()
    lines = doctor_notes.split('\n')
    
    # Enhanced keyword extraction
    subjective_info = extract_section_info(lines, [
        'complains', 'reports', 'states', 'denies', 'pain', 'symptoms', 
        'history', 'onset', 'duration', 'patient says', 'chief complaint'
    ])
    
    objective_info = extract_section_info(lines, [
        'vital signs', 'vs:', 'bp', 'hr', 'temp', 'examination', 'exam',
        'physical', 'inspection', 'palpation', 'auscultation', 'laboratory'
    ])
    
    assessment_info = extract_section_info(lines, [
        'diagnosis', 'impression', 'assessment', 'likely', 'possible', 
        'rule out', 'differential', 'icd', 'condition'
    ])
    
    plan_info = extract_section_info(lines, [
        'plan', 'treatment', 'medication', 'prescribe', 'follow', 'return',
        'therapy', 'intervention', 'monitoring', 'referral'
    ])
    
    # Build comprehensive SOAP note
    soap_note = build_soap_sections(subjective_info, objective_info, assessment_info, plan_info)
    
    if include_timestamp:
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        header = f"""πŸ“‹ SOAP NOTE (Template-Enhanced)
πŸ• Timestamp: {timestamp}
πŸ”’ Processed locally - HIPAA compliant
πŸ₯ Scribbled Docs Medical Assistant

{'='*60}
"""
        return header + soap_note
    
    return soap_note

def extract_section_info(lines, keywords):
    """Extract relevant lines for each SOAP section"""
    relevant_lines = []
    for line in lines:
        if any(keyword in line.lower() for keyword in keywords):
            relevant_lines.append(line.strip())
    return relevant_lines

def build_soap_sections(subjective, objective, assessment, plan):
    """Build formatted SOAP sections"""
    
    soap = "SUBJECTIVE:\n"
    if subjective:
        soap += '\n'.join(f"β€’ {line}" for line in subjective[:5])  # Limit to 5 most relevant
    else:
        soap += "β€’ Patient complaints and reported symptoms as documented"
    
    soap += "\n\nOBJECTIVE:\n"
    if objective:
        soap += '\n'.join(f"β€’ {line}" for line in objective[:5])
    else:
        soap += "β€’ Physical examination findings and clinical observations as documented"
    
    soap += "\n\nASSESSMENT:\n"
    if assessment:
        soap += '\n'.join(f"β€’ {line}" for line in assessment[:3])
    else:
        soap += "β€’ Clinical assessment based on presenting symptoms and examination findings"
    
    soap += "\n\nPLAN:\n"
    if plan:
        soap += '\n'.join(f"β€’ {line}" for line in plan[:5])
    else:
        soap += "β€’ Treatment plan and follow-up care as clinically indicated"
    
    return soap

# OCR Functions (same as before but optimized)
def initialize_ocr():
    """Initialize OCR reader for handwritten notes"""
    try:
        # Initialize with English and medical text optimization
        reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available())
        print("βœ… EasyOCR initialized for handwritten medical notes")
        return reader
    except Exception as e:
        print(f"⚠️ EasyOCR initialization failed: {e}")
        return None

def extract_text_from_image(image, ocr_reader=None):
    """Enhanced OCR for medical handwriting"""
    if image is None:
        return "❌ No image provided"
    
    try:
        # Preprocess specifically for medical handwriting
        processed_img = preprocess_medical_image(image)
        
        extracted_text = ""
        
        # Try EasyOCR (better for handwritten text)
        if ocr_reader is not None:
            try:
                results = ocr_reader.readtext(processed_img, detail=0, paragraph=True)
                if results:
                    extracted_text = ' '.join(results)
                    if len(extracted_text.strip()) > 10:
                        return clean_medical_text(extracted_text)
            except Exception as e:
                print(f"EasyOCR failed: {e}")
        
        # Fallback to Tesseract with medical optimization
        try:
            import pytesseract
            
            # Medical-optimized Tesseract config
            custom_config = r'--oem 3 --psm 6 -c tessedit_char_whitelist=ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,;:()[]{}/-+= '
            
            tesseract_text = pytesseract.image_to_string(processed_img, config=custom_config)
            
            if len(tesseract_text.strip()) > 5:
                return clean_medical_text(tesseract_text)
                
        except Exception as e:
            print(f"Tesseract failed: {e}")
        
        return "❌ Could not extract text from image. Please ensure the image is clear and try again."
        
    except Exception as e:
        return f"❌ Error processing image: {str(e)}"

def preprocess_medical_image(image):
    """Optimized preprocessing for medical handwriting"""
    try:
        img_array = np.array(image)
        
        # Convert to grayscale
        if len(img_array.shape) == 3:
            gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
        else:
            gray = img_array
        
        # Resize for optimal OCR (medical notes are often small)
        height, width = gray.shape
        if height < 400 or width < 400:
            scale_factor = max(400/height, 400/width)
            new_width = int(width * scale_factor)
            new_height = int(height * scale_factor)
            gray = cv2.resize(gray, (new_width, new_height), interpolation=cv2.INTER_CUBIC)
        
        # Advanced preprocessing for handwritten medical text
        # 1. Noise reduction
        denoised = cv2.fastNlMeansDenoising(gray)
        
        # 2. Contrast enhancement specifically for handwriting
        clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8))
        enhanced = clahe.apply(denoised)
        
        # 3. Morphological operations to clean up text
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,1))
        cleaned = cv2.morphologyEx(enhanced, cv2.MORPH_CLOSE, kernel)
        
        # 4. Adaptive thresholding (better for varying lighting)
        thresh = cv2.adaptiveThreshold(
            cleaned, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2
        )
        
        return thresh
        
    except Exception as e:
        print(f"❌ Image preprocessing error: {e}")
        return np.array(image)

def clean_medical_text(text):
    """Clean extracted text with medical context awareness"""
    # Remove excessive whitespace and empty lines
    lines = [line.strip() for line in text.split('\n') if line.strip()]
    
    # Medical text cleaning
    cleaned_lines = []
    for line in lines:
        # Remove obvious OCR artifacts
        line = line.replace('|', 'l').replace('_', ' ').replace('~', '-')
        
        # Fix common medical abbreviations that OCR might misread
        medical_corrections = {
            'BP': 'BP', 'HR': 'HR', 'RR': 'RR', 'O2': 'O2',
            'mg': 'mg', 'ml': 'ml', 'cc': 'cc', 'cm': 'cm'
        }
        
        for wrong, correct in medical_corrections.items():
            line = line.replace(wrong.lower(), correct)
        
        if len(line) > 1:  # Filter out single characters
            cleaned_lines.append(line)
    
    return '\n'.join(cleaned_lines)

# Enhanced Gradio Interface
def gradio_generate_soap(medical_notes, uploaded_image, model_data):
    """Main Gradio interface function"""
    model, tokenizer = model_data if model_data else (None, None)
    ocr_reader = getattr(gradio_generate_soap, 'ocr_reader', None)
    
    text_to_process = medical_notes.strip() if medical_notes else ""
    
    # Process uploaded image with enhanced OCR
    if uploaded_image is not None:
        try:
            print("πŸ” Extracting text from medical image...")
            extracted_text = extract_text_from_image(uploaded_image, ocr_reader)
            
            if not extracted_text.startswith("❌"):
                if not text_to_process:
                    text_to_process = f"--- Extracted from uploaded image ---\n{extracted_text}"
                else:
                    text_to_process = f"{text_to_process}\n\n--- Additional text from image ---\n{extracted_text}"
            else:
                return extracted_text
                
        except Exception as e:
            return f"❌ Error processing image: {str(e)}"
    
    if not text_to_process:
        return "❌ Please enter medical notes manually or upload an image with medical text"
    
    # Generate SOAP note using Gemma 3n
    try:
        return generate_soap_note_gemma(text_to_process, model, tokenizer)
    except Exception as e:
        return f"❌ Error generating SOAP note: {str(e)}"

# Example medical notes for testing
medical_examples = {
    'chest_pain': """Patient: John Smith, 45yo M
CC: Chest pain x 2 hours
HPI: Sudden onset sharp substernal chest pain 7/10, radiating to L arm. Associated SOB, diaphoresis. No N/V.
PMH: HTN, no CAD
VS: BP 150/90, HR 110, RR 22, O2 96% RA
PE: Anxious, diaphoretic. RRR, no murmur. CTAB. No edema.
A: Acute chest pain, r/o MI
P: EKG, troponins, CXR, ASA 325mg, monitor""",

    'diabetes': """Patient: Maria Garcia, 52yo F
CC: Increased thirst, urination x 3 weeks  
HPI: Polyuria, polydipsia, 10lb weight loss. FH DM. No fever, abd pain.
VS: BP 140/85, HR 88, BMI 28
PE: Mild dehydration, dry MM. RRR. No diabetic foot changes.
Labs: Random glucose 280, HbA1c pending
A: New onset DM Type 2
P: HbA1c, CMP, diabetic education, metformin, f/u 2 weeks""",

    'pediatric': """Patient: Emma Thompson, 8yo F
CC: Fever, sore throat x 2 days
HPI: Fever 102F, sore throat, odynophagia, decreased appetite. No cough/rhinorrhea.
VS: T 101.8F, HR 110, RR 20, O2 99%
PE: Alert, mildly ill. Throat erythematous w/ tonsillar exudate. Anterior cervical LAD.
A: Strep pharyngitis (probable)
P: Rapid strep, throat culture, amoxicillin if +, supportive care, RTC PRN"""
}

# Initialize everything
def initialize_app():
    """Initialize the complete application"""
    print("πŸš€ Initializing Scribbled Docs SOAP Generator...")
    
    # Setup device
    device = setup_device()
    
    # Load model
    model, tokenizer = load_unsloth_gemma_model(device)
    
    # Initialize OCR
    ocr_reader = initialize_ocr()
    gradio_generate_soap.ocr_reader = ocr_reader
    
    return model, tokenizer

# Create the main Gradio interface
def create_interface(model, tokenizer):
    """Create the main Gradio interface"""
    
    interface = gr.Interface(
        fn=lambda notes, image: gradio_generate_soap(notes, image, (model, tokenizer)),
        inputs=[
            gr.Textbox(
                lines=8,
                placeholder="Enter medical notes here...\n\nExample:\nPatient: John Doe, 45yo M\nCC: Chest pain\nVS: BP 140/90, HR 88\n...",
                label="πŸ“ Medical Notes (Manual Entry)",
                info="Enter unstructured medical notes or upload an image below"
            ),
            gr.Image(
                type="pil",
                label="πŸ“· Upload Medical Image (Handwritten/Typed Notes)",
                sources=["upload", "webcam"],
                info="Upload PNG/JPG images of medical notes - handwritten or typed"
            )
        ],
        outputs=[
            gr.Textbox(
                lines=20,
                label="πŸ“‹ Generated SOAP Note",
                show_copy_button=True,
                info="Professional SOAP note generated from your input"
            )
        ],
        title="πŸ₯ Scribbled Docs - Medical SOAP Note Generator",
        description="""
        **Transform medical notes into professional SOAP documentation using Gemma 3n AI**
        
        πŸ”’ **100% Offline & HIPAA Compliant** - All processing happens locally on your device
        πŸ€– **Powered by Unsloth-optimized Gemma 3n** - 4-bit quantized for efficiency
        πŸ“ **Supports handwritten & typed notes** - Advanced OCR for medical handwriting
        
        **Instructions:**
        1. Enter medical notes manually OR upload an image
        2. Click Submit to generate a structured SOAP note
        3. Copy the result for use in your medical records
        
        **Perfect for:** Emergency medicine, family practice, internal medicine, pediatrics
        """,
        examples=[
            [medical_examples['chest_pain'], None],
            [medical_examples['diabetes'], None], 
            [medical_examples['pediatric'], None]
        ],
        theme=gr.themes.Soft(
            primary_hue="blue",
            secondary_hue="green"
        ),
        allow_flagging="never",
        analytics_enabled=False
    )
    
    return interface

# Main execution
if __name__ == "__main__":
    try:
        # Initialize app
        model, tokenizer = initialize_app()
        
        # Create and launch interface
        interface = create_interface(model, tokenizer)
        
        print("\n🎯 Scribbled Docs SOAP Generator Ready!")
        print("πŸ“± Features:")
        print("   βœ… Offline processing (HIPAA compliant)")
        print("   βœ… Unsloth-optimized Gemma 3n model")
        print("   βœ… Handwritten note OCR")
        print("   βœ… Professional SOAP formatting")
        print("   βœ… Medical terminology aware")
        
        # Launch interface
        interface.launch(
            share=True,  # Creates public link
            server_port=7860,
            show_error=True,
            quiet=False
        )
        
    except Exception as e:
        print(f"❌ Error launching application: {e}")
        print("πŸ’‘ Make sure you have installed: pip install unsloth gradio easyocr opencv-python")