Boltz79 commited on
Commit
00ae0ce
·
verified ·
1 Parent(s): 7291be7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -0
app.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Load Whisper for speech-to-text
5
+ whisper = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
6
+
7
+ # Load DistilBERT for sentiment analysis
8
+ sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
9
+
10
+ # Function to process audio and analyze tone
11
+ def analyze_call(audio_file):
12
+ # Step 1: Transcribe audio to text
13
+ transcription = whisper(audio_file)["text"]
14
+
15
+ # Step 2: Analyze sentiment of the transcription
16
+ sentiment_result = sentiment_analyzer(transcription)[0]
17
+
18
+ return {
19
+ "transcription": transcription,
20
+ "sentiment": sentiment_result["label"],
21
+ "confidence": sentiment_result["score"]
22
+ }
23
+
24
+ # Gradio Interface
25
+ interface = gr.Interface(
26
+ fn=analyze_call,
27
+ inputs=gr.Audio(source="microphone", type="filepath"),
28
+ outputs=[
29
+ gr.Textbox(label="Transcription"),
30
+ gr.Textbox(label="Sentiment"),
31
+ gr.Textbox(label="Confidence")
32
+ ],
33
+ live=True, # Enable real-time processing
34
+ title="Real-Time Call Analysis",
35
+ description="Upload or record audio to analyze tone and sentiment."
36
+ )
37
+
38
+ # Launch the app
39
+ interface.launch()