Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from sentence_transformers import SentenceTransformer
|
|
3 |
import pandas as pd
|
4 |
import pickle
|
5 |
from pathlib import Path
|
|
|
6 |
|
7 |
def make_clickable_both(val):
|
8 |
name, url = val.split('#')
|
@@ -11,6 +12,8 @@ def make_clickable_both(val):
|
|
11 |
return f'<a href="{url}">{name}</a>'
|
12 |
|
13 |
def find(query):
|
|
|
|
|
14 |
def get_detailed_instruct(task_description: str, query: str) -> str:
|
15 |
return f'Instruct: {task_description}\nQuery: {query}'
|
16 |
|
@@ -19,14 +22,17 @@ def find(query):
|
|
19 |
queries = [
|
20 |
get_detailed_instruct(task, query)
|
21 |
]
|
22 |
-
print("cekpoin0\n")
|
23 |
|
24 |
quran = pd.read_csv('quran-eng.csv', delimiter=",")
|
|
|
25 |
|
26 |
file = open('quran-splitted.sav','rb')
|
27 |
quran_splitted = pickle.load(file)
|
|
|
|
|
28 |
|
29 |
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
|
|
|
30 |
|
31 |
documents = quran_splitted['text'].tolist()
|
32 |
# document_embeddings = model.encode(documents, convert_to_tensor=True, normalize_embeddings=True)
|
@@ -34,18 +40,21 @@ def find(query):
|
|
34 |
# pickle.dump(embeddings, open(filename, 'wb'))
|
35 |
file = open('encoded_quran_text_split_multilingual-e5-large-instructs.sav','rb')
|
36 |
document_embeddings = pickle.load(file)
|
37 |
-
print("
|
|
|
38 |
|
39 |
query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
|
40 |
scores = (query_embeddings @ document_embeddings.T) * 100
|
41 |
-
print("
|
|
|
42 |
|
43 |
# insert the similarity value to dataframe & sort it
|
44 |
file = open('quran-splitted.sav','rb')
|
45 |
quran_splitted = pickle.load(file)
|
46 |
quran_splitted['similarity'] = scores.tolist()[0]
|
47 |
sorted_quran = quran_splitted.sort_values(by='similarity', ascending=False)
|
48 |
-
print("
|
|
|
49 |
|
50 |
#results = ""
|
51 |
results = pd.DataFrame()
|
@@ -56,7 +65,9 @@ def find(query):
|
|
56 |
results = pd.concat([results, result_quran])
|
57 |
#results = results + result_quran['text'].item()+" (Q.S "+str(result['sura']).rstrip('.0')+":"+str(result['aya']).rstrip('.0')+")\n"
|
58 |
i=i+1
|
59 |
-
|
|
|
|
|
60 |
url = 'https://quran.com/'+results['sura'].astype(str)+':'+results['aya'].astype(str)+'/tafsirs/en-tafisr-ibn-kathir'
|
61 |
results['text'] = '<a href="'+url+'">'+results['text']+ '</a>' + ' (QS. ' + results['sura'].astype(str) + ':' + results['aya'].astype(str) + ')'
|
62 |
results = results.drop(columns=['sura', 'aya'])
|
|
|
3 |
import pandas as pd
|
4 |
import pickle
|
5 |
from pathlib import Path
|
6 |
+
import time
|
7 |
|
8 |
def make_clickable_both(val):
|
9 |
name, url = val.split('#')
|
|
|
12 |
return f'<a href="{url}">{name}</a>'
|
13 |
|
14 |
def find(query):
|
15 |
+
print("start")
|
16 |
+
print(time.time())
|
17 |
def get_detailed_instruct(task_description: str, query: str) -> str:
|
18 |
return f'Instruct: {task_description}\nQuery: {query}'
|
19 |
|
|
|
22 |
queries = [
|
23 |
get_detailed_instruct(task, query)
|
24 |
]
|
|
|
25 |
|
26 |
quran = pd.read_csv('quran-eng.csv', delimiter=",")
|
27 |
+
print(time.time())
|
28 |
|
29 |
file = open('quran-splitted.sav','rb')
|
30 |
quran_splitted = pickle.load(file)
|
31 |
+
print("load quran\n")
|
32 |
+
print(time.time())
|
33 |
|
34 |
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
|
35 |
+
print(time.time())
|
36 |
|
37 |
documents = quran_splitted['text'].tolist()
|
38 |
# document_embeddings = model.encode(documents, convert_to_tensor=True, normalize_embeddings=True)
|
|
|
40 |
# pickle.dump(embeddings, open(filename, 'wb'))
|
41 |
file = open('encoded_quran_text_split_multilingual-e5-large-instructs.sav','rb')
|
42 |
document_embeddings = pickle.load(file)
|
43 |
+
print("load quran embedding\n")
|
44 |
+
print(time.time())
|
45 |
|
46 |
query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
|
47 |
scores = (query_embeddings @ document_embeddings.T) * 100
|
48 |
+
print("count similarities\n")
|
49 |
+
print(time.time())
|
50 |
|
51 |
# insert the similarity value to dataframe & sort it
|
52 |
file = open('quran-splitted.sav','rb')
|
53 |
quran_splitted = pickle.load(file)
|
54 |
quran_splitted['similarity'] = scores.tolist()[0]
|
55 |
sorted_quran = quran_splitted.sort_values(by='similarity', ascending=False)
|
56 |
+
print("sort by similarity\n")
|
57 |
+
print(time.time())
|
58 |
|
59 |
#results = ""
|
60 |
results = pd.DataFrame()
|
|
|
65 |
results = pd.concat([results, result_quran])
|
66 |
#results = results + result_quran['text'].item()+" (Q.S "+str(result['sura']).rstrip('.0')+":"+str(result['aya']).rstrip('.0')+")\n"
|
67 |
i=i+1
|
68 |
+
print("collect results\n")
|
69 |
+
print(time.time())
|
70 |
+
|
71 |
url = 'https://quran.com/'+results['sura'].astype(str)+':'+results['aya'].astype(str)+'/tafsirs/en-tafisr-ibn-kathir'
|
72 |
results['text'] = '<a href="'+url+'">'+results['text']+ '</a>' + ' (QS. ' + results['sura'].astype(str) + ':' + results['aya'].astype(str) + ')'
|
73 |
results = results.drop(columns=['sura', 'aya'])
|