import gradio as gr import os, gc, torch from datetime import datetime from huggingface_hub import hf_hub_download from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) ctx_limit = 1024 title = "RWKV-4-Pile-7B-Instruct-test4-20230326" os.environ["RWKV_JIT_ON"] = '1' os.environ["RWKV_CUDA_ON"] = '1' # if '1' then use CUDA kernel for seq mode (much faster) from rwkv.model import RWKV model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-pile-7b", filename=f"{title}.pth") model = RWKV(model=model_path, strategy='cuda fp16i8 *10 -> cuda fp16') from rwkv.utils import PIPELINE, PIPELINE_ARGS pipeline = PIPELINE(model, "20B_tokenizer.json") def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. # Instruction: {instruction} # Input: {input} # Response: """ else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. # Instruction: {instruction} # Response: """ def evaluate( instruction, input=None, token_count=200, temperature=1.0, top_p=0.7, presencePenalty = 0.1, countPenalty = 0.1, ): args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p), alpha_frequency = countPenalty, alpha_presence = presencePenalty, token_ban = [], # ban the generation of some tokens token_stop = [0]) # stop generation whenever you see any token here instruction = instruction.strip() input = input.strip() ctx = generate_prompt(instruction, input) gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}') all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(int(token_count)): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency) token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p) if token in args.token_stop: break all_tokens += [token] if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 gc.collect() torch.cuda.empty_cache() yield out_str.strip() examples = [ ["Tell me about ravens.", "", 150, 1.0, 0.5, 0.4, 0.4], ["Explain the following metaphor: Life is like cats.", "", 150, 1.0, 0.5, 0.4, 0.4], ["Write a python function to search on wikipedia by title", "", 150, 1.0, 0.5, 0.2, 0.2], ["Write a story using the following information", "A man named Alex chops a tree down", 150, 1.0, 0.5, 0.4, 0.4], ["What are the colors of these things?", "sun, moon, apple", 150, 1.0, 0.5, 0.4, 0.4], ["Generate a list of adjectives that describe a person as brave.", "", 150, 1.0, 0.5, 0.4, 0.4], ["You have $100, and your goal is to turn that into as much money as possible in the shortest time possible, without doing anything illegal. Please respond with detailed plan.", "", 150, 1.0, 0.5, 0.4, 0.4], ] g = gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox(lines=2, label="Instruction", value="Tell me about ravens."), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider(minimum=10, maximum=200, step=10, value=150), # token_count gr.components.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0), # temperature gr.components.Slider(minimum=0, maximum=1, step=0.05, value=0.5), # top_p gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # presencePenalty gr.components.Slider(0.0, 1.0, step=0.1, value=0.4), # countPenalty ], outputs=[ gr.inputs.Textbox( lines=5, label="Output", ) ], title=f"🐦Raven - {title}", description="Raven is [RWKV 7B](https://github.com/BlinkDL/ChatRWKV) 100% RNN [RWKV-LM](https://github.com/BlinkDL/RWKV-LM) finetuned to follow instructions. *** Please try examples first (bottom of page) *** (edit them to use your question). Demo limited to ctxlen 1024. It is finetuned on [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca), codealpaca and more. For best results, *** keep you prompt short and clear *** (don't use those wordy "You are xxxxx" ChatGPT-style prompts because such prompt styles are not in the training data yet).", examples=examples, cache_examples=False, ) g.queue(concurrency_count=1, max_size=10) g.launch(share=False)