File size: 18,679 Bytes
a9415a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.neighbors import NearestNeighbors
from sklearn.preprocessing import StandardScaler
import xgboost as xgb
import base64
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import NearestNeighbors
from math import sqrt
from statistics import mean, variance
import seaborn as sns

import plotly.graph_objects as go

def cohend_plot_function(std_mean_diff_df2, std_mean_diff_df, selected_attributes):
    # Create subplot of selected attributes
    fig = go.Figure()

    x = std_mean_diff_df2[std_mean_diff_df2["Metrics"].isin(selected_attributes)]["Cohend Value"][::-1]
    y = list(std_mean_diff_df[std_mean_diff_df["Metrics"].isin(selected_attributes)]["Metrics"][::-1])

    x1 = std_mean_diff_df[std_mean_diff_df["Metrics"].isin(selected_attributes)]["Cohend Value"][::-1]
    y1 = list(std_mean_diff_df[std_mean_diff_df["Metrics"].isin(selected_attributes)]["Metrics"][::-1])

    # Add traces
    fig.add_trace(go.Scatter(
        x=x,
        y=y,
        mode='markers',
        marker=dict(color='blue'),
        name='general_control_cohend'
    ))

    fig.add_trace(go.Scatter(
        x=x1,
        y=y1,
        mode='markers',
        marker=dict(color='orange', symbol='diamond-open'),
        name='synthetic_control_cohend'
    ))

    # Add vertical lines
    for val in [-0.1, 0.1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75]:
        fig.add_shape(
            type="line",
            x0=val,
            y0=0,
            x1=val,
            y1=10,
            line=dict(
                color="gray",
                width=1,
                dash="dash",
            )
        )

    # Add vertical line at x=0
    fig.add_shape(
        type="line",
        x0=0,
        y0=0,
        x1=0,
        y1=10,
        line=dict(
            color="black",
            width=1,
        )
    )

    # Update layout
    fig.update_layout(
        xaxis=dict(
            title='cohend',
            range=[-1, 1]
        ),
        yaxis=dict(
            title='Metrics',
            autorange="reversed"
        ),
        legend=dict(
            orientation="h",
            yanchor="bottom",
            y=1.02,
            xanchor="right",
            x=1
        )
    )

    # Show
    st.plotly_chart(fig,use_container_width=True)


def plot_comparison(comparison_df):
    fig = go.Figure()

    # Add bars for treatment and control values
    fig.add_trace(go.Bar(
        x=comparison_df.index,
        y=comparison_df[comparison_df.columns[0]],
        name='Treatment',
        marker=dict(color='#053057'),
    ))

    fig.add_trace(go.Bar(
        x=comparison_df.index,
        y=comparison_df[comparison_df.columns[1]],
        name='Control',
        marker=dict(color='#8ac4f8'),
    ))

    # Update layout
    fig.update_layout(
        xaxis=dict(
            title='quartiles'
        ),
        yaxis=dict(
            title='values'
        ),
        barmode='group',
        title=comparison_df.columns[0].split('treatment')[1][1:]
    )

    # Show
    st.plotly_chart(fig,use_container_width=True)


def plot_propensity_distribution(treatment_data, control_data):
    fig = go.Figure()

    # Add histograms for treatment and control data
    fig.add_trace(go.Histogram(
        x=treatment_data,
        name='Treatment',
        marker=dict(color='#053057'),
        opacity=0.6
    ))

    fig.add_trace(go.Histogram(
        x=control_data,
        name='Control',
        marker=dict(color='#8ac4f8'),
        opacity=0.6
    ))

    # Update layout
    fig.update_layout(
        xaxis=dict(
            title='propensity_score'
        ),
        yaxis=dict(
            title='count'
        ),
        barmode='overlay',
        title='Propensity Distribution'
    )

    # Show
    st.plotly_chart(fig,use_container_width=True)

def comparison(df, variable):
    # generates a comparison df for any given feature
    treatment_values = df[df.Y==1].groupby('quartiles')[variable].mean()
    control_values = df[df.Y==0].groupby('quartiles')[variable].mean()
    comparison = pd.merge(treatment_values, control_values, left_index=True, right_index=True)
    comparison.rename({f'{variable}_x': f'treatment_{variable}', f'{variable}_y': f'control_{variable}'}, axis=1, inplace=True)
    comparison['difference'] = np.abs(comparison[f'treatment_{variable}'] - comparison[f'control_{variable}'])
    comparison['percent_difference'] = np.abs((comparison[f'treatment_{variable}'] - comparison[f'control_{variable}']) / comparison[f'treatment_{variable}'])
    return comparison


# Function to calculate Cohen's d for independent samples

def cohend(d1, d2):
    n1, n2 = len(d1), len(d2)
    s1, s2 = np.var(d1, ddof=1), np.var(d2, ddof=1)
    s = sqrt(((n1-1) * s1 + (n2-1) * s2) / (n1 + n2 - 2))
    u1, u2 = mean(d1), mean(d2)
    # Check if the standard deviation is zero
    if s == 0:
        return 0  # Return 0 when the denominator is zero
    else:
        return (u1 - u2) / s

# Function to calculate standardized mean differences
def std_mean_diff(group_A_df, group_B_df):
    cohend_values_arr = [0] * len(group_A_df.columns)
    
    for i in range(len(group_A_df.columns)):    
        cohend_values_arr[i] = cohend(group_A_df[group_A_df.columns[i]], group_B_df[group_A_df.columns[i]])

    cohend_array_pre_transp = [group_A_df.columns, cohend_values_arr]
    np_array = np.array(cohend_array_pre_transp)
    cohend_array = np.transpose(np_array)
                                                                       
    return cohend_array

# Function to get matched IDs and calculate Cohen's d values
def cohend_code_function(binned_df, matching_df):
    treat_df_complete = binned_df[binned_df['Y'] == 1]
    control_df_complete = binned_df[binned_df['Y'] == 0]
    treat_df_complete.drop('Y', axis =1, inplace = True)
    control_df_complete.drop('Y', axis =1, inplace = True)
    treatment_cust = pd.DataFrame()
    control_cust = pd.DataFrame()
    treatment_cust['individual_id_ov'] = matching_df["Id"]
    control_cust['individual_id_ov'] = matching_df["matched_Id"]
    
    #getting cohend values for synthetic control population

    group_A_df = treatment_cust[['individual_id_ov']]
    group_A_df = group_A_df.merge(treat_df_complete,
                                            how = 'left',right_on='individual_id_ov',left_on='individual_id_ov')
    group_B_df = control_cust[['individual_id_ov']]
    group_B_df = group_B_df.merge(control_df_complete,
                                             how = 'left',right_on='individual_id_ov',left_on='individual_id_ov')
    
    group_A_df.drop('individual_id_ov', axis =1, inplace = True)
    group_B_df.drop('individual_id_ov', axis =1, inplace = True)
    
    cohensd_df = std_mean_diff(group_A_df, group_B_df)
    std_mean_diff_df = pd.DataFrame(columns=["Metrics","Cohend Value"])
    for i in range(len(cohensd_df)):
        std_mean_diff_df.loc[len(std_mean_diff_df.index)] = [cohensd_df[i][0],round(float(cohensd_df[i][1]),2)]

    std_mean_diff_df["flag"] = std_mean_diff_df.apply(lambda x : 1 if (x["Cohend Value"]>0.1 or x["Cohend Value"]<-0.1) else 0, axis =1)
    st.write('Number of variables with standard mean difference between treatment and control is out of desired range (-0.1, 0.1): ', std_mean_diff_df["flag"].sum())

    
    # Download cohend output table
    st.write(std_mean_diff_df)
    
    #getting cohend values for General population

    group_A_df = treatment_cust[['individual_id_ov']]
    group_A_df = group_A_df.merge(treat_df_complete,
                                            how = 'left',right_on='individual_id_ov',left_on='individual_id_ov')
    group_B_df = control_df_complete[['individual_id_ov']]
    group_B_df = group_B_df.merge(control_df_complete,
                                             how = 'left',right_on='individual_id_ov',left_on='individual_id_ov')
    
    group_A_df.drop('individual_id_ov', axis =1, inplace = True)
    group_B_df.drop('individual_id_ov', axis =1, inplace = True)
    
    cohensd_df = std_mean_diff(group_A_df, group_B_df)

    std_mean_diff_df2 = pd.DataFrame(columns=["Metrics","Cohend Value"])

    for i in range(len(cohensd_df)):
        std_mean_diff_df2.loc[len(std_mean_diff_df2.index)] = [cohensd_df[i][0],round(float(cohensd_df[i][1]),2)]
        
    return std_mean_diff_df2, std_mean_diff_df

def calculate_iv(df, flag, identifier):
    df1 = df.drop([flag, identifier, 'propensity_score'], axis=1)
    iv_df = pd.DataFrame(columns=['Feature', 'IV'])
    for column in df1.columns:
        data = pd.concat([pd.qcut(df1[column], q=10, duplicates='drop'), df[flag]], axis=1)
        groups = data.groupby(by=column)[df[flag].name].agg(['count', 'sum'])
        groups['event_rate'] = groups['sum'] / groups['count']
        groups['non_event_rate'] = (groups['count'] - groups['sum']) / groups['count']
        groups['WOE'] = np.log(groups['event_rate'] / groups['non_event_rate'])
        groups['IV'] = (groups['event_rate'] - groups['non_event_rate']) * groups['WOE']
        iv = groups['IV'].sum()
        iv_df = pd.concat([iv_df, pd.DataFrame({'Feature': [column], 'IV': [iv]})],axis=0, ignore_index=True)
    return iv_df

def xgboost_feature_importance(df, flag,identifier):
    X, y = df.drop([flag,identifier,'propensity_score'],axis=1), df[[flag]]
    model = xgb.XGBClassifier()
    model.fit(X, y)
    importances = model.feature_importances_
    importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': importances})
    importance_df = importance_df.sort_values(by='Importance', ascending=False)
    return importance_df

# iv_result = calculate_iv(df_features, df_target)
# importance_result = xgboost_feature_importance(df_features, df_target)


def get_matching_pairs(identifier,treated_df, non_treated_df, sample_size_A, sample_size_B,matching_columns,flag):
    # if treated_df[identifier].isna().any() or non_treated_df[identifier].isna().any():
    #     st.error("The identifier should not contain Nan's")

    treated_df = treated_df[matching_columns].sample(frac=sample_size_A/100)
    non_treated_df = non_treated_df[matching_columns].sample(frac=sample_size_B/100)

    treated_df = treated_df.set_index(st.session_state.identifier)
    treated_df.drop(flag,axis=1,inplace=True)

    non_treated_df = non_treated_df.set_index(st.session_state.identifier)
    non_treated_df.drop(flag,axis=1,inplace=True)

    treated_x = treated_df.values
    non_treated_x = non_treated_df.values

    scaler = StandardScaler()
    scaler.fit(treated_x)
    treated_x = scaler.transform(treated_x)
    non_treated_x = scaler.transform(non_treated_x)


    print("data transformaion completed")

    nbrs = NearestNeighbors(n_neighbors=1, algorithm='ball_tree').fit(non_treated_x)

    print("model fitting completed")

    distances, indices = nbrs.kneighbors(treated_x)

    print("matching completed")

    indices = indices.reshape([1,indices.shape[0]*indices.shape[1]])

    res = []
    for i in list(treated_df.index):
        for ele in range(1):
            res.append(i)


    output_df = pd.DataFrame()
    output_df["Id"] = res
    output_df["matched_Id"] = non_treated_df.iloc[indices[0]].index

    return output_df

# Streamlit App
st.title("Matching")

# Calculate IV
iv_df = calculate_iv(st.session_state.binned_df, st.session_state.flag, st.session_state.identifier)

# Calculate XGBoost feature importance
importance_df = xgboost_feature_importance(st.session_state.binned_df, st.session_state.flag, st.session_state.identifier)

# Combine IV and feature importance into a final DataFrame
combined_df = pd.merge(iv_df, importance_df, on='Feature', suffixes=('_iv', '_importance'))
combined_df['Avg_IV_Importance'] = (combined_df['IV'] + combined_df['Importance']) / 2
combined_df.sort_values('Avg_IV_Importance',inplace=True,ascending=False)
# Add the 'Select' column with checkboxes
combined_df.insert(0, 'Select', False)
combined_df.reset_index(drop=True,inplace=True)

# Display the feature importances
st.subheader("Feature importances")
st.session_state["edited_df_combined"] = st.data_editor(
    combined_df.style.hide(axis="index"),
    column_config={
        "Select": st.column_config.CheckboxColumn(required=True)
    },
    disabled=combined_df.drop("Select", axis=1).columns,use_container_width=True
)

# Allow users to enter the number of top features they want to select
top_features_input = st.number_input("Enter the number of top features", min_value=1, max_value=len(combined_df), value=None)

if top_features_input is not None:
    # Select the top features based on user input
    selected_df = combined_df.head(top_features_input)
    selected_features = selected_df['Feature'].tolist()
else:
    # Check if any features are selected via checkboxes
    selected_features = st.session_state.edited_df_combined[st.session_state.edited_df_combined['Select']]['Feature'].tolist()

    # Determine the selected features based on user input
    #selected_features = checkbox_selected_features if checkbox_selected_features else selected_features

selected_features.append(st.session_state.identifier)
selected_features.append(st.session_state.flag)
# Update the session state with the selected features
st.session_state.selected_features = selected_features

with st.expander("Matching Inputs",expanded=True):
    st.write("Matching Inputs")
    ui_columns = st.columns((1, 1))
    with ui_columns[0]:
        sample_size_A = st.slider("Sample Size for treatment Group", 1, 100, 100)
    with ui_columns[1]:
        sample_size_B = st.slider("Sample Size for Control Group", 1, 100, 100)
    with ui_columns[0]:
        st.write("#")
        run_matching = st.button(
            label="Run Matching"
        )
st.divider()
if run_matching:
    matching_df = get_matching_pairs(st.session_state.identifier,st.session_state.treated_df, st.session_state.non_treated_df, sample_size_A, sample_size_B,st.session_state.selected_features,st.session_state.flag)
    st.session_state.matching_df = matching_df
    # Display the result
    st.dataframe(st.session_state.matching_df)
    if st.session_state.matching_df is not None:
        #with st.expander("Download Matching DF"):
        download_button = st.download_button(
            label="Download Matched Data as CSV",
        data=st.session_state.matching_df.to_csv(index=False).encode(),
            file_name='matching_data.csv',
            mime='text/csv',
        )

# if 'matching_df' not in st.session_state:
#     st.session_state.matching_df = False

st.subheader("Matching diagnostics")
control_group = st.session_state.binned_df[st.session_state.binned_df[st.session_state.identifier].isin(st.session_state.matching_df['matched_Id'])]
treatment_group = st.session_state.binned_df[st.session_state.binned_df.Y==1]

#create combined group and add ventiles
combined_group = pd.concat([control_group, treatment_group])
combined_group['quartiles'] = pd.qcut(combined_group['propensity_score'], 4, labels=False)

combined_group.drop(st.session_state.identifier,axis=1,inplace=True)
st.session_state.combined_group=combined_group

if 'perform_diagnostics' not in st.session_state:
    st.session_state.perform_diagnostics = False

# Display button
perform_diagnostics = st.button(label="Run Diagnostics")

if perform_diagnostics or st.session_state.perform_diagnostics:
    st.session_state.perform_diagnostics = True
    with st.expander("Matching Diagnostics", expanded=True):
        left, right = st.columns(2)
        std_mean_diff_df2,std_mean_diff_df = cohend_code_function(st.session_state.binned_df, st.session_state.matching_df)
        st.subheader("Cohen's d Plot")
        cohend_plot_function(std_mean_diff_df2,std_mean_diff_df, selected_features)

        # Pre-matching Propensity Distribution
        st.subheader("Pre-matching Propensity Distributions")
        plot_propensity_distribution(st.session_state.binned_df[st.session_state.binned_df.Y == 1]['propensity_score'], st.session_state.binned_df[st.session_state.binned_df.Y == 0]['propensity_score'])

        # Post-matching Propensity Distribution
        st.subheader("Post-matching Propensity Distributions")
        temp = pd.merge(left=st.session_state.matching_df, right=st.session_state.binned_df[[st.session_state.identifier, 'propensity_score']], left_on='Id', right_on=st.session_state.identifier, how='left')
        temp.drop(st.session_state.identifier, axis=1, inplace=True)
        temp.rename({'Id': 'treatment_id', 'matched_Id': 'control_id', 'propensity_score': 'treatment_propensity'}, axis=1, inplace=True)
        temp = pd.merge(left=temp, right=st.session_state.binned_df[[st.session_state.identifier, 'propensity_score']], left_on='control_id', right_on=st.session_state.identifier, how='left')
        temp.drop(st.session_state.identifier, axis=1, inplace=True)
        temp.rename({'propensity_score': 'control_propensity'}, axis=1, inplace=True)

        plot_propensity_distribution(temp['treatment_propensity'],temp['control_propensity'])



    with st.expander("Comparison Plots",expanded=True):
        st.markdown(
            "<p class='plot-header'>Change the selected variable to plot"
            " different charts</p>",
            unsafe_allow_html=True,
        )
        left, right = st.columns(2)
        with left:
            if 'selected_variable_comp' not in st.session_state:
                st.session_state.selected_variable_comp = []  # Initialize selected_variable

            selected_variable_comp = st.multiselect(
                "Variable",
                st.session_state.combined_group.columns,
                st.session_state.selected_variable_comp  # Set the default value to the stored session state
            )

            # Update session state with selected variable
            st.session_state.selected_variable_comp = selected_variable_comp

        if st.session_state.selected_variable_comp:
            # Plot comparisons for selected variables
            comparisons = {}
            for var in st.session_state.selected_variable_comp:
                comparisons[var] = comparison(combined_group, var)
                plot_comparison(comparisons[var])


# selected_variables = st.multiselect("Select variables for comparison", combined_group.columns)
# if selected_variables:
# # Plot comparisons for selected variables
#     comparisons = {}
#     for var in selected_variables:
#         comparisons[var] = comparison(combined_group, var)
#         plot_comparison(comparisons[var])