import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub import from_pretrained_keras
teacher_model = from_pretrained_keras("Blazer007/consistency_training_with_supervision_teacher_model")
student_model = from_pretrained_keras("Blazer007/consistency_training_with_supervision_student_model")
class_names = [
"Airplane",
"Automobile",
"Bird",
"Cat",
"Deer",
"Dog",
"Frog",
"Horse",
"Ship",
"Truck",
]
IMG_SIZE = 72
def infer(input_image):
print('#$$$$$$$$$$$$$$$$$$$$$$$$$ IN INFER $$$$$$$$$$$$$$$$$$$$$$$')
# image_tensor = read_image(input_image)
image_tensor = tf.convert_to_tensor(input_image)
image_tensor.set_shape([None, None, 3])
image_tensor = tf.image.resize(image_tensor, (IMG_SIZE, IMG_SIZE))
print(image_tensor.shape)
predictions = teacher_model.predict(np.expand_dims((image_tensor), axis=0))
print(predictions)
predictions = np.squeeze(predictions)
print(predictions)
predictions = np.argmax(predictions) # , axis=2
print(predictions)
predicted_label = class_names[predictions.item()]
print(predictions.item())
print(predicted_label)
return str(predicted_label)
input = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE))
output = [gr.outputs.Label()]
examples = [[], []]
title = "Image Classification using "
description = "Upload an image or select from examples to classify it.
The allowed classes are - Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck.
Space author: Vivek Rai
Keras example author: Sayak Paul