Update app.py
Browse files
app.py
CHANGED
@@ -21,34 +21,43 @@ class_names = [
|
|
21 |
]
|
22 |
|
23 |
examples = [
|
24 |
-
['./aeroplane.png'],
|
25 |
-
['./
|
|
|
|
|
|
|
26 |
]
|
27 |
|
28 |
IMG_SIZE = 72
|
29 |
|
30 |
-
def
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
37 |
predictions = student_model.predict(np.expand_dims((image_tensor), axis=0))
|
38 |
-
print(predictions)
|
39 |
predictions = np.squeeze(predictions)
|
40 |
-
|
41 |
-
predictions = np.argmax(predictions) # , axis=2
|
42 |
-
print(predictions)
|
43 |
predicted_label = class_names[predictions.item()]
|
44 |
-
print(predictions.item())
|
45 |
-
print(predicted_label)
|
46 |
return str(predicted_label)
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
input = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE))
|
49 |
-
output = [gr.outputs.Label()]
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
52 |
|
53 |
gr_interface = gr.Interface(
|
54 |
infer,
|
|
|
21 |
]
|
22 |
|
23 |
examples = [
|
24 |
+
['./aeroplane.png'],
|
25 |
+
['./dog.png'],
|
26 |
+
['./horse.png'],
|
27 |
+
['./ship.png'],
|
28 |
+
['./truck.png']
|
29 |
]
|
30 |
|
31 |
IMG_SIZE = 72
|
32 |
|
33 |
+
def teacher_model_output(image_tensor):
|
34 |
+
predictions = teacher_model.predict(np.expand_dims((image_tensor), axis=0))
|
35 |
+
predictions = np.squeeze(predictions)
|
36 |
+
predictions = np.argmax(predictions)
|
37 |
+
predicted_label = class_names[predictions.item()]
|
38 |
+
return str(predicted_label)
|
39 |
+
|
40 |
+
def student_model_output(image_tensor):
|
41 |
predictions = student_model.predict(np.expand_dims((image_tensor), axis=0))
|
|
|
42 |
predictions = np.squeeze(predictions)
|
43 |
+
predictions = np.argmax(predictions)
|
|
|
|
|
44 |
predicted_label = class_names[predictions.item()]
|
|
|
|
|
45 |
return str(predicted_label)
|
46 |
+
|
47 |
+
def infer(input_image):
|
48 |
+
image_tensor = tf.convert_to_tensor(input_image)
|
49 |
+
image_tensor.set_shape([None, None, 3])
|
50 |
+
image_tensor = tf.image.resize(image_tensor, (IMG_SIZE, IMG_SIZE))
|
51 |
+
return teacher_model_output(image_tensor), student_model_output(image_tensor)
|
52 |
|
53 |
input = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE))
|
54 |
+
output = [gr.outputs.Label(label = "Teacher Model Output"), gr.outputs.Label(label = "Student Model Output")]
|
55 |
+
|
56 |
+
title = "Image Classification using Consistency training with supervision"
|
57 |
+
description = "Upload an image or select from examples to classify it.<br>The allowed classes are - Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck.<br><p><b>Teacher Model Repo - </b> <br><b> Student Model Repo - </b></p>"
|
58 |
+
|
59 |
+
|
60 |
+
article = "<div style='text-align: center;'><a href='https://twitter.com/_Blazer_007' target='_blank'>Space by Vivek Rai</a><br><a href='https://keras.io/examples/vision/consistency_training/' target='_blank'>Keras example by Sayak Paul</a></div>"
|
61 |
|
62 |
gr_interface = gr.Interface(
|
63 |
infer,
|