|
import numpy as np |
|
import tensorflow as tf |
|
import gradio as gr |
|
from huggingface_hub import from_pretrained_keras |
|
|
|
teacher_model = from_pretrained_keras("Blazer007/consistency_training_with_supervision_teacher_model") |
|
|
|
student_model = from_pretrained_keras("Blazer007/consistency_training_with_supervision_student_model") |
|
|
|
class_names = [ |
|
"Airplane", |
|
"Automobile", |
|
"Bird", |
|
"Cat", |
|
"Deer", |
|
"Dog", |
|
"Frog", |
|
"Horse", |
|
"Ship", |
|
"Truck", |
|
] |
|
|
|
IMG_SIZE = 72 |
|
|
|
def infer(input_image): |
|
print('#$$$$$$$$$$$$$$$$$$$$$$$$$ IN INFER $$$$$$$$$$$$$$$$$$$$$$$') |
|
|
|
image_tensor = tf.convert_to_tensor(input_image) |
|
image_tensor.set_shape([None, None, 3]) |
|
image_tensor = tf.image.resize(image_tensor, (IMG_SIZE, IMG_SIZE)) |
|
print(image_tensor.shape) |
|
predictions = teacher_model.predict(np.expand_dims((image_tensor), axis=0)) |
|
print(predictions) |
|
predictions = np.squeeze(predictions) |
|
print(predictions) |
|
predictions = np.argmax(predictions) |
|
print(predictions) |
|
predicted_label = class_names[predictions.item()] |
|
print(predictions.item()) |
|
print(predicted_label) |
|
return str(predicted_label) |
|
|
|
input = gr.inputs.Image(shape=(IMG_SIZE, IMG_SIZE)) |
|
output = [gr.outputs.Label()] |
|
examples = [[], []] |
|
title = "Image Classification using " |
|
description = "Upload an image or select from examples to classify it.<br>The allowed classes are - Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse, Ship, Truck.<br><p><b>Space author: Vivek Rai</b> <br><b> Keras example author: Sayak Paul </b></p>" |
|
|
|
gr_interface = gr.Interface( |
|
infer, |
|
input, |
|
output, |
|
examples=examples, |
|
allow_flagging=False, |
|
analytics_enabled=False, |
|
title=title, |
|
description=description).launch(enable_queue=True, debug=True) |