import gradio as gr from medical_chatbot import ColabBioGPTChatbot # Instantiate and auto-load the medical data chatbot = ColabBioGPTChatbot(use_gpu=True, use_8bit=True) medical_file_uploaded = False try: chatbot.load_medical_data("Pediatric_cleaned.txt") medical_file_uploaded = True startup_status = "✅ Medical file 'Pediatric_cleaned.txt' loaded at startup. Ready to chat!" except Exception as e: startup_status = f"❌ Failed to load 'Pediatric_cleaned.txt': {str(e)}" def generate_response(user_input): if not medical_file_uploaded: return "⚠️ Medical data failed to load. Please check the file and restart the app." return chatbot.chat(user_input) with gr.Blocks() as demo: gr.Markdown("## 🩺 Pediatric Medical Assistant") gr.Markdown(startup_status) chatbot_ui = gr.Chatbot(label="🧠 Chat History") user_input = gr.Textbox(placeholder="Ask a pediatric health question...", lines=2, show_label=False) submit_btn = gr.Button("Send") def on_submit(user_message, chat_history): bot_response = generate_response(user_message) chat_history.append((user_message, bot_response)) return "", chat_history user_input.submit(fn=on_submit, inputs=[user_input, chatbot_ui], outputs=[user_input, chatbot_ui]) submit_btn.click(fn=on_submit, inputs=[user_input, chatbot_ui], outputs=[user_input, chatbot_ui]) demo.launch(share=True)