Blaiseboy commited on
Commit
be99a14
·
verified ·
1 Parent(s): 5cbe064

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -695
app.py DELETED
@@ -1,695 +0,0 @@
1
- # BioGPT Medical Chatbot with Gradio Interface - HUGGING FACE SPACES VERSION
2
-
3
- import gradio as gr
4
- import torch
5
- import warnings
6
- import numpy as np
7
- import os
8
- import re
9
- import time
10
- from datetime import datetime
11
- from typing import List, Dict, Optional, Tuple
12
- import json
13
-
14
- # Install required packages if not already installed
15
- try:
16
- from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
17
- from sentence_transformers import SentenceTransformer
18
- import faiss
19
- except ImportError:
20
- print("Installing required packages...")
21
- import subprocess
22
- import sys
23
-
24
- packages = [
25
- "transformers>=4.21.0",
26
- "torch>=1.12.0",
27
- "sentence-transformers",
28
- "faiss-cpu",
29
- "accelerate",
30
- "bitsandbytes",
31
- "datasets",
32
- "numpy",
33
- "sacremoses",
34
- "scipy"
35
- ]
36
-
37
- for package in packages:
38
- try:
39
- subprocess.check_call([sys.executable, "-m", "pip", "install", package])
40
- except Exception as e:
41
- print(f"Failed to install {package}: {e}")
42
-
43
- from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
44
- from sentence_transformers import SentenceTransformer
45
- import faiss
46
-
47
- # Suppress warnings
48
- warnings.filterwarnings('ignore')
49
-
50
- class GradioBioGPTChatbot:
51
- def __init__(self, use_gpu=False, use_8bit=False): # Default to CPU for HF Spaces
52
- """Initialize BioGPT chatbot for Gradio deployment"""
53
- self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
54
- self.use_8bit = use_8bit and torch.cuda.is_available()
55
-
56
- print(f"🔧 Initializing on device: {self.device}")
57
-
58
- # Initialize components with error handling
59
- try:
60
- self.setup_embeddings()
61
- self.setup_faiss_index()
62
- self.setup_biogpt()
63
- except Exception as e:
64
- print(f"❌ Initialization error: {e}")
65
- self.model = None
66
- self.tokenizer = None
67
- self.embedding_model = None
68
-
69
- # Conversation tracking
70
- self.conversation_history = []
71
- self.knowledge_chunks = []
72
- self.is_data_loaded = False
73
-
74
- def setup_embeddings(self):
75
- """Setup medical-optimized embeddings with error handling"""
76
- try:
77
- print("🔄 Loading embedding model...")
78
- self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
79
- self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
80
- self.use_embeddings = True
81
- print("✅ Embeddings loaded successfully")
82
- except Exception as e:
83
- print(f"❌ Embeddings setup failed: {e}")
84
- self.embedding_model = None
85
- self.embedding_dim = 384
86
- self.use_embeddings = False
87
-
88
- def setup_faiss_index(self):
89
- """Setup FAISS for vector search with error handling"""
90
- try:
91
- print("🔄 Setting up FAISS index...")
92
- self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
93
- self.faiss_ready = True
94
- print("✅ FAISS index ready")
95
- except Exception as e:
96
- print(f"❌ FAISS setup failed: {e}")
97
- self.faiss_index = None
98
- self.faiss_ready = False
99
-
100
- def setup_biogpt(self):
101
- """Setup BioGPT model with optimizations and fallbacks"""
102
- print("🔄 Loading BioGPT model...")
103
-
104
- models_to_try = [
105
- "microsoft/BioGPT", # Smaller version
106
- "microsoft/DialoGPT-medium", # Fallback 1
107
- "microsoft/DialoGPT-small", # Fallback 2
108
- "gpt2" # Final fallback
109
- ]
110
-
111
- for model_name in models_to_try:
112
- try:
113
- print(f"🔄 Trying model: {model_name}")
114
-
115
- self.tokenizer = AutoTokenizer.from_pretrained(model_name)
116
- if self.tokenizer.pad_token is None:
117
- self.tokenizer.pad_token = self.tokenizer.eos_token
118
-
119
- if self.device == "cuda" and self.use_8bit:
120
- quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_threshold=6.0)
121
- else:
122
- quantization_config = None
123
-
124
- self.model = AutoModelForCausalLM.from_pretrained(
125
- model_name,
126
- quantization_config=quantization_config,
127
- torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
128
- device_map="auto" if self.device == "cuda" else None,
129
- trust_remote_code=True,
130
- low_cpu_mem_usage=True
131
- )
132
-
133
- if self.device == "cpu":
134
- self.model = self.model.to(self.device)
135
-
136
- print(f"✅ Successfully loaded: {model_name}")
137
- return # Exit after first successful model load
138
-
139
- except Exception as e:
140
- print(f"❌ Failed to load {model_name}: {e}")
141
- continue
142
-
143
- print("❌ All models failed to load")
144
- self.model = None
145
- self.tokenizer = None
146
-
147
- def create_medical_chunks(self, text: str, chunk_size: int = 300) -> List[Dict]:
148
- """Create medically-optimized text chunks with smaller size for efficiency"""
149
- chunks = []
150
-
151
- # Split by medical sections first
152
- medical_sections = self.split_by_medical_sections(text)
153
-
154
- chunk_id = 0
155
- for section in medical_sections:
156
- if len(section.split()) > chunk_size:
157
- # Split large sections by sentences
158
- sentences = re.split(r'[.!?]+', section)
159
- current_chunk = ""
160
-
161
- for sentence in sentences:
162
- sentence = sentence.strip()
163
- if not sentence:
164
- continue
165
-
166
- if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
167
- current_chunk += sentence + ". "
168
- else:
169
- if current_chunk.strip():
170
- chunks.append({
171
- 'id': chunk_id,
172
- 'text': current_chunk.strip(),
173
- 'medical_focus': self.identify_medical_focus(current_chunk)
174
- })
175
- chunk_id += 1
176
- current_chunk = sentence + ". "
177
-
178
- if current_chunk.strip():
179
- chunks.append({
180
- 'id': chunk_id,
181
- 'text': current_chunk.strip(),
182
- 'medical_focus': self.identify_medical_focus(current_chunk)
183
- })
184
- chunk_id += 1
185
- else:
186
- if section.strip(): # Don't add empty sections
187
- chunks.append({
188
- 'id': chunk_id,
189
- 'text': section,
190
- 'medical_focus': self.identify_medical_focus(section)
191
- })
192
- chunk_id += 1
193
-
194
- return chunks
195
-
196
- def split_by_medical_sections(self, text: str) -> List[str]:
197
- """Split text by medical sections"""
198
- section_patterns = [
199
- r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
200
- r'\n\s*\d+\.\s+',
201
- r'\n\n+'
202
- ]
203
-
204
- sections = [text]
205
- for pattern in section_patterns:
206
- new_sections = []
207
- for section in sections:
208
- splits = re.split(pattern, section, flags=re.IGNORECASE)
209
- new_sections.extend([s.strip() for s in splits if len(s.strip()) > 50]) # Reduced minimum length
210
- sections = new_sections
211
-
212
- return sections
213
-
214
- def identify_medical_focus(self, text: str) -> str:
215
- """Identify the medical focus of a text chunk"""
216
- text_lower = text.lower()
217
-
218
- categories = {
219
- 'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea', 'child', 'baby', 'infant'],
220
- 'treatments': ['treatment', 'therapy', 'medication', 'antibiotics', 'medicine'],
221
- 'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs', 'condition'],
222
- 'emergency': ['emergency', 'urgent', 'serious', 'hospital', 'call doctor'],
223
- 'prevention': ['prevention', 'vaccine', 'immunization', 'avoid', 'prevent']
224
- }
225
-
226
- for category, keywords in categories.items():
227
- if any(keyword in text_lower for keyword in keywords):
228
- return category
229
-
230
- return 'general_medical'
231
-
232
- def load_medical_data_from_file(self, file_path: str) -> Tuple[str, bool]:
233
- """Load medical data from uploaded file with better error handling"""
234
- if not file_path or not os.path.exists(file_path):
235
- return "❌ No file uploaded or file not found.", False
236
-
237
- try:
238
- print(f"🔄 Processing file: {file_path}")
239
-
240
- # Read file with encoding detection
241
- encodings_to_try = ['utf-8', 'utf-8-sig', 'latin-1', 'cp1252']
242
- text = None
243
-
244
- for encoding in encodings_to_try:
245
- try:
246
- with open(file_path, 'r', encoding=encoding) as f:
247
- text = f.read()
248
- print(f"✅ File read successfully with {encoding} encoding")
249
- break
250
- except UnicodeDecodeError:
251
- continue
252
-
253
- if text is None:
254
- return "❌ Could not read file. Please ensure it's a valid text file.", False
255
-
256
- if len(text.strip()) < 100:
257
- return "❌ File appears to be too short or empty. Please upload a substantial medical text.", False
258
-
259
- # Create chunks
260
- print("🔄 Creating medical chunks...")
261
- chunks = self.create_medical_chunks(text)
262
-
263
- if not chunks:
264
- return "❌ No valid medical content found in the file.", False
265
-
266
- self.knowledge_chunks = chunks
267
- print(f"✅ Created {len(chunks)} chunks")
268
-
269
- # Generate embeddings if available
270
- if self.use_embeddings and self.embedding_model and self.faiss_ready:
271
- print("🔄 Generating embeddings...")
272
- success = self.generate_embeddings_and_index(chunks)
273
- if success:
274
- self.is_data_loaded = True
275
- return f"✅ Medical data loaded successfully! {len(chunks)} chunks processed with vector search.", True
276
-
277
- self.is_data_loaded = True
278
- return f"✅ Medical data loaded successfully! {len(chunks)} chunks processed (keyword search mode).", True
279
-
280
- except Exception as e:
281
- print(f"❌ Error processing file: {e}")
282
- return f"❌ Error loading file: {str(e)}", False
283
-
284
- def generate_embeddings_and_index(self, chunks: List[Dict]) -> bool:
285
- """Generate embeddings and add to FAISS index with error handling"""
286
- try:
287
- print("🔄 Generating embeddings...")
288
- texts = [chunk['text'] for chunk in chunks]
289
-
290
- # Process in batches to avoid memory issues
291
- batch_size = 32
292
- all_embeddings = []
293
-
294
- for i in range(0, len(texts), batch_size):
295
- batch_texts = texts[i:i+batch_size]
296
- batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
297
- all_embeddings.append(batch_embeddings)
298
-
299
- embeddings = np.vstack(all_embeddings)
300
- self.faiss_index.add(embeddings.astype('float32'))
301
- print(f"✅ Added {len(embeddings)} embeddings to FAISS index")
302
- return True
303
-
304
- except Exception as e:
305
- print(f"❌ Embedding generation failed: {e}")
306
- return False
307
-
308
- def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
309
- """Retrieve relevant medical context with fallback"""
310
- if not self.knowledge_chunks:
311
- return []
312
-
313
- if self.use_embeddings and self.embedding_model and self.faiss_ready:
314
- try:
315
- query_embedding = self.embedding_model.encode([query])
316
- distances, indices = self.faiss_index.search(query_embedding.astype('float32'), n_results)
317
- context_chunks = []
318
- for i in indices[0]:
319
- if i != -1 and i < len(self.knowledge_chunks):
320
- context_chunks.append(self.knowledge_chunks[i]['text'])
321
-
322
- if context_chunks:
323
- return context_chunks
324
- except Exception as e:
325
- print(f"❌ Embedding search failed: {e}")
326
-
327
- # Fallback to keyword search
328
- return self.keyword_search_medical(query, n_results)
329
-
330
- def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
331
- """Medical-focused keyword search"""
332
- if not self.knowledge_chunks:
333
- return []
334
-
335
- query_words = set(query.lower().split())
336
- chunk_scores = []
337
-
338
- for chunk_info in self.knowledge_chunks:
339
- chunk_text = chunk_info['text']
340
- chunk_words = set(chunk_text.lower().split())
341
-
342
- word_overlap = len(query_words.intersection(chunk_words))
343
- base_score = word_overlap / len(query_words) if query_words else 0
344
-
345
- # Boost medical content
346
- medical_boost = 0
347
- if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
348
- medical_boost = 0.3
349
-
350
- final_score = base_score + medical_boost
351
-
352
- if final_score > 0:
353
- chunk_scores.append((final_score, chunk_text))
354
-
355
- chunk_scores.sort(reverse=True)
356
- return [chunk for _, chunk in chunk_scores[:n_results]]
357
-
358
- def generate_biogpt_response(self, context: str, query: str) -> str:
359
- """Generate medical response using loaded model"""
360
- if not self.model or not self.tokenizer:
361
- return "Medical AI model is not available. Using fallback response based on retrieved context."
362
-
363
- try:
364
- # Simplified prompt for better compatibility
365
- prompt = f"Context: {context[:600]}\n\nQuestion: {query}\n\nAnswer:"
366
-
367
- inputs = self.tokenizer(
368
- prompt,
369
- return_tensors="pt",
370
- truncation=True,
371
- max_length=512, # Reduced for efficiency
372
- padding=True
373
- )
374
-
375
- if self.device == "cuda":
376
- inputs = {k: v.to(self.device) for k, v in inputs.items()}
377
-
378
- with torch.no_grad():
379
- outputs = self.model.generate(
380
- **inputs,
381
- max_new_tokens=100, # Reduced for efficiency
382
- do_sample=True,
383
- temperature=0.7,
384
- top_p=0.9,
385
- pad_token_id=self.tokenizer.eos_token_id,
386
- repetition_penalty=1.1,
387
- no_repeat_ngram_size=3
388
- )
389
-
390
- full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
391
-
392
- if "Answer:" in full_response:
393
- generated_response = full_response.split("Answer:")[-1].strip()
394
- else:
395
- generated_response = full_response[len(prompt):].strip()
396
-
397
- return self.clean_medical_response(generated_response) if generated_response else self.fallback_response(context, query)
398
-
399
- except Exception as e:
400
- print(f"❌ Generation failed: {e}")
401
- return self.fallback_response(context, query)
402
-
403
- def clean_medical_response(self, response: str) -> str:
404
- """Clean and format medical response"""
405
- if not response:
406
- return "I couldn't generate a specific response. Please consult a healthcare professional."
407
-
408
- # Remove incomplete sentences and clean up
409
- sentences = re.split(r'[.!?]+', response)
410
- clean_sentences = []
411
-
412
- for sentence in sentences:
413
- sentence = sentence.strip()
414
- if len(sentence) > 15 and not sentence.endswith(('and', 'or', 'but', 'however', 'the', 'a', 'an')):
415
- clean_sentences.append(sentence)
416
- if len(clean_sentences) >= 2: # Limit to 2 sentences for clarity
417
- break
418
-
419
- if clean_sentences:
420
- cleaned = '. '.join(clean_sentences) + '.'
421
- else:
422
- cleaned = response[:150] + '...' if len(response) > 150 else response
423
-
424
- return cleaned
425
-
426
- def fallback_response(self, context: str, query: str) -> str:
427
- """Fallback response when model generation fails"""
428
- if not context:
429
- return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional."
430
-
431
- # Extract most relevant sentences from context
432
- sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
433
-
434
- if sentences:
435
- # Return first 1-2 most relevant sentences
436
- response = sentences[0]
437
- if len(sentences) > 1 and len(response) < 100:
438
- response += '. ' + sentences[1]
439
- response += '.'
440
- else:
441
- response = context[:200] + '...' if len(context) > 200 else context
442
-
443
- return response
444
-
445
- def handle_conversational_interactions(self, query: str) -> Optional[str]:
446
- """Handle conversational interactions"""
447
- query_lower = query.lower().strip()
448
-
449
- # Greetings
450
- if query_lower in ['hello', 'hi', 'hey', 'good morning', 'good afternoon']:
451
- if not self.is_data_loaded:
452
- return "👋 Hello! I'm your medical AI assistant. Please upload your medical data file first, then ask me any health-related questions!"
453
- else:
454
- return "👋 Hello again! I'm ready to help. Ask me any medical question related to your uploaded data."
455
-
456
-
457
- # Thanks
458
- if any(thanks in query_lower for thanks in ['thank you', 'thanks', 'thx', 'appreciate']):
459
- return "🙏 You're welcome! Remember to always consult healthcare professionals for medical decisions. Feel free to ask more questions!"
460
-
461
- # Goodbyes
462
- if any(bye in query_lower for bye in ['bye', 'goodbye', 'see you', 'farewell']):
463
- return "👋 Goodbye! Take care and stay healthy! 🏥"
464
-
465
- # Help/About
466
- if any(help_word in query_lower for help_word in ['help', 'what can you do', 'how do you work']):
467
- return """🤖 **Medical AI Assistant**
468
-
469
- I can help with:
470
- • Medical information and conditions
471
- • Symptom understanding
472
- • Treatment information
473
- • When to seek medical care
474
-
475
- **How to use:**
476
- 1. Upload your medical data file
477
- 2. Ask specific medical questions
478
- 3. Get evidence-based information
479
-
480
- ⚠️ **Important:** I provide educational information only. Always consult healthcare professionals for medical advice."""
481
-
482
- return None
483
-
484
- def chat_interface(self, message: str, history: List[List[str]]) -> Tuple[str, List[List[str]]]:
485
- """Main chat interface for Gradio"""
486
- if not message.strip():
487
- return "", history
488
-
489
- # Check if data is loaded
490
- if not self.is_data_loaded:
491
- response = "⚠️ Please upload your medical data file first using the file upload above before asking questions."
492
- history.append([message, response])
493
- return "", history
494
-
495
- # Handle conversational interactions
496
- conversational_response = self.handle_conversational_interactions(message)
497
- if conversational_response:
498
- history.append([message, conversational_response])
499
- return "", history
500
-
501
- # Process medical query
502
- try:
503
- context = self.retrieve_medical_context(message)
504
-
505
- if not context:
506
- response = "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
507
- else:
508
- main_context = '\n\n'.join(context)
509
- medical_response = self.generate_biogpt_response(main_context, message)
510
- response = f"🩺 **Medical Information:** {medical_response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
511
-
512
- # Add to conversation history
513
- self.conversation_history.append({
514
- 'query': message,
515
- 'response': response,
516
- 'timestamp': datetime.now().isoformat()
517
- })
518
-
519
- history.append([message, response])
520
- return "", history
521
-
522
- except Exception as e:
523
- print(f"❌ Chat interface error: {e}")
524
- error_response = "I encountered an error processing your question. Please try again or consult a healthcare professional."
525
- history.append([message, error_response])
526
- return "", history
527
-
528
- # Initialize the chatbot with error handling
529
- print("🚀 Initializing Medical AI Assistant...")
530
- try:
531
- chatbot = GradioBioGPTChatbot(use_gpu=False, use_8bit=False) # CPU-optimized for HF Spaces
532
- print("✅ Chatbot initialized successfully")
533
- except Exception as e:
534
- print(f"❌ Chatbot initialization failed: {e}")
535
- chatbot = None
536
-
537
- def upload_and_process_file(file):
538
- """Handle file upload and processing"""
539
- if file is None:
540
- return "❌ No file uploaded."
541
-
542
- if chatbot is None:
543
- return "❌ Chatbot not initialized properly. Please refresh the page."
544
-
545
- try:
546
- message, success = chatbot.load_medical_data_from_file(file)
547
- return message
548
- except Exception as e:
549
- return f"❌ Error processing file: {str(e)}"
550
-
551
- # Create Gradio Interface
552
- def create_gradio_interface():
553
- """Create and launch Gradio interface"""
554
-
555
- with gr.Blocks(
556
- title="🏥 Medical AI Assistant",
557
- theme=gr.themes.Soft(),
558
- css="""
559
- .gradio-container {
560
- max-width: 1200px !important;
561
- }
562
- .chat-message {
563
- border-radius: 10px !important;
564
- }
565
- """
566
- ) as demo:
567
-
568
- gr.HTML("""
569
- <div style="text-align: center; padding: 20px;">
570
- <h1>🏥 Medical AI Assistant</h1>
571
- <p style="font-size: 18px; color: #666;">
572
- AI-powered medical information assistant
573
- </p>
574
- <p style="color: #888;">
575
- ⚠️ For educational purposes only. Always consult healthcare professionals for medical advice.
576
- </p>
577
- </div>
578
- """)
579
-
580
- with gr.Row():
581
- with gr.Column(scale=1):
582
- gr.HTML("<h3>📁 Upload Medical Data</h3>")
583
- file_upload = gr.File(
584
- label="Upload Medical Text File (.txt)",
585
- file_types=[".txt"],
586
- type="filepath"
587
- )
588
- upload_status = gr.Textbox(
589
- label="Upload Status",
590
- value="📋 Please upload your medical data file to begin...",
591
- interactive=False,
592
- lines=3
593
- )
594
-
595
- gr.HTML("""
596
- <div style="margin-top: 20px; padding: 15px; background-color: #f0f8ff; border-radius: 10px;">
597
- <h4>💡 How to Use:</h4>
598
- <ol>
599
- <li>Upload your medical text file (.txt format)</li>
600
- <li>Wait for processing confirmation</li>
601
- <li>Start asking medical questions!</li>
602
- </ol>
603
-
604
- <h4>📝 Example Questions:</h4>
605
- <ul>
606
- <li>"What causes fever in children?"</li>
607
- <li>"How to treat a persistent cough?"</li>
608
- <li>"When should I call the doctor?"</li>
609
- <li>"Signs of dehydration in infants?"</li>
610
- </ul>
611
- </div>
612
- """)
613
-
614
- with gr.Column(scale=2):
615
- gr.HTML("<h3>💬 Medical Consultation</h3>")
616
- chatbot_interface = gr.Chatbot(
617
- label="Medical AI Chat",
618
- height=500,
619
- bubble_full_width=False
620
- )
621
-
622
- msg_input = gr.Textbox(
623
- label="Your Medical Question",
624
- placeholder="Ask me about health topics, symptoms, treatments, or when to seek care...",
625
- lines=2
626
- )
627
-
628
- with gr.Row():
629
- send_btn = gr.Button("🩺 Send Question", variant="primary")
630
- clear_btn = gr.Button("🗑️ Clear Chat", variant="secondary")
631
-
632
- # Event handlers with error handling
633
- def safe_upload_handler(file):
634
- try:
635
- return upload_and_process_file(file)
636
- except Exception as e:
637
- return f"❌ Upload error: {str(e)}"
638
-
639
- def safe_chat_handler(message, history):
640
- try:
641
- if chatbot is None:
642
- return "", history + [[message, "❌ System error. Please refresh the page."]]
643
- return chatbot.chat_interface(message, history)
644
- except Exception as e:
645
- return "", history + [[message, f"❌ Error: {str(e)}"]]
646
-
647
- file_upload.change(
648
- fn=safe_upload_handler,
649
- inputs=[file_upload],
650
- outputs=[upload_status]
651
- )
652
-
653
- msg_input.submit(
654
- fn=safe_chat_handler,
655
- inputs=[msg_input, chatbot_interface],
656
- outputs=[msg_input, chatbot_interface]
657
- )
658
-
659
- send_btn.click(
660
- fn=safe_chat_handler,
661
- inputs=[msg_input, chatbot_interface],
662
- outputs=[msg_input, chatbot_interface]
663
- )
664
-
665
- clear_btn.click(
666
- fn=lambda: ([], ""),
667
- outputs=[chatbot_interface, msg_input]
668
- )
669
-
670
- gr.HTML("""
671
- <div style="text-align: center; margin-top: 30px; padding: 20px; background-color: #fff3cd; border-radius: 10px;">
672
- <h4>⚠️ Medical Disclaimer</h4>
673
- <p>This AI assistant provides educational medical information only and is not a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of qualified healthcare providers with questions about medical conditions.</p>
674
- </div>
675
- """)
676
-
677
- return demo
678
-
679
- if __name__ == "__main__":
680
- # Create and launch the Gradio interface
681
- demo = create_gradio_interface()
682
-
683
- print("🌐 Launching Gradio interface...")
684
- print("📋 Upload your medical data file and start chatting!")
685
-
686
- # Launch with HF Spaces optimized settings
687
- demo.launch(
688
- share=False,
689
- server_name="0.0.0.0",
690
- server_port=7860,
691
- show_error=True,
692
- show_tips=False,
693
- enable_queue=True,
694
- max_threads=40
695
- )