Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,695 +0,0 @@
|
|
1 |
-
# BioGPT Medical Chatbot with Gradio Interface - HUGGING FACE SPACES VERSION
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
-
import torch
|
5 |
-
import warnings
|
6 |
-
import numpy as np
|
7 |
-
import os
|
8 |
-
import re
|
9 |
-
import time
|
10 |
-
from datetime import datetime
|
11 |
-
from typing import List, Dict, Optional, Tuple
|
12 |
-
import json
|
13 |
-
|
14 |
-
# Install required packages if not already installed
|
15 |
-
try:
|
16 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
17 |
-
from sentence_transformers import SentenceTransformer
|
18 |
-
import faiss
|
19 |
-
except ImportError:
|
20 |
-
print("Installing required packages...")
|
21 |
-
import subprocess
|
22 |
-
import sys
|
23 |
-
|
24 |
-
packages = [
|
25 |
-
"transformers>=4.21.0",
|
26 |
-
"torch>=1.12.0",
|
27 |
-
"sentence-transformers",
|
28 |
-
"faiss-cpu",
|
29 |
-
"accelerate",
|
30 |
-
"bitsandbytes",
|
31 |
-
"datasets",
|
32 |
-
"numpy",
|
33 |
-
"sacremoses",
|
34 |
-
"scipy"
|
35 |
-
]
|
36 |
-
|
37 |
-
for package in packages:
|
38 |
-
try:
|
39 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
|
40 |
-
except Exception as e:
|
41 |
-
print(f"Failed to install {package}: {e}")
|
42 |
-
|
43 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
44 |
-
from sentence_transformers import SentenceTransformer
|
45 |
-
import faiss
|
46 |
-
|
47 |
-
# Suppress warnings
|
48 |
-
warnings.filterwarnings('ignore')
|
49 |
-
|
50 |
-
class GradioBioGPTChatbot:
|
51 |
-
def __init__(self, use_gpu=False, use_8bit=False): # Default to CPU for HF Spaces
|
52 |
-
"""Initialize BioGPT chatbot for Gradio deployment"""
|
53 |
-
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
|
54 |
-
self.use_8bit = use_8bit and torch.cuda.is_available()
|
55 |
-
|
56 |
-
print(f"🔧 Initializing on device: {self.device}")
|
57 |
-
|
58 |
-
# Initialize components with error handling
|
59 |
-
try:
|
60 |
-
self.setup_embeddings()
|
61 |
-
self.setup_faiss_index()
|
62 |
-
self.setup_biogpt()
|
63 |
-
except Exception as e:
|
64 |
-
print(f"❌ Initialization error: {e}")
|
65 |
-
self.model = None
|
66 |
-
self.tokenizer = None
|
67 |
-
self.embedding_model = None
|
68 |
-
|
69 |
-
# Conversation tracking
|
70 |
-
self.conversation_history = []
|
71 |
-
self.knowledge_chunks = []
|
72 |
-
self.is_data_loaded = False
|
73 |
-
|
74 |
-
def setup_embeddings(self):
|
75 |
-
"""Setup medical-optimized embeddings with error handling"""
|
76 |
-
try:
|
77 |
-
print("🔄 Loading embedding model...")
|
78 |
-
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
79 |
-
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
|
80 |
-
self.use_embeddings = True
|
81 |
-
print("✅ Embeddings loaded successfully")
|
82 |
-
except Exception as e:
|
83 |
-
print(f"❌ Embeddings setup failed: {e}")
|
84 |
-
self.embedding_model = None
|
85 |
-
self.embedding_dim = 384
|
86 |
-
self.use_embeddings = False
|
87 |
-
|
88 |
-
def setup_faiss_index(self):
|
89 |
-
"""Setup FAISS for vector search with error handling"""
|
90 |
-
try:
|
91 |
-
print("🔄 Setting up FAISS index...")
|
92 |
-
self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
|
93 |
-
self.faiss_ready = True
|
94 |
-
print("✅ FAISS index ready")
|
95 |
-
except Exception as e:
|
96 |
-
print(f"❌ FAISS setup failed: {e}")
|
97 |
-
self.faiss_index = None
|
98 |
-
self.faiss_ready = False
|
99 |
-
|
100 |
-
def setup_biogpt(self):
|
101 |
-
"""Setup BioGPT model with optimizations and fallbacks"""
|
102 |
-
print("🔄 Loading BioGPT model...")
|
103 |
-
|
104 |
-
models_to_try = [
|
105 |
-
"microsoft/BioGPT", # Smaller version
|
106 |
-
"microsoft/DialoGPT-medium", # Fallback 1
|
107 |
-
"microsoft/DialoGPT-small", # Fallback 2
|
108 |
-
"gpt2" # Final fallback
|
109 |
-
]
|
110 |
-
|
111 |
-
for model_name in models_to_try:
|
112 |
-
try:
|
113 |
-
print(f"🔄 Trying model: {model_name}")
|
114 |
-
|
115 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
116 |
-
if self.tokenizer.pad_token is None:
|
117 |
-
self.tokenizer.pad_token = self.tokenizer.eos_token
|
118 |
-
|
119 |
-
if self.device == "cuda" and self.use_8bit:
|
120 |
-
quantization_config = BitsAndBytesConfig(load_in_8bit=True, llm_int8_threshold=6.0)
|
121 |
-
else:
|
122 |
-
quantization_config = None
|
123 |
-
|
124 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
125 |
-
model_name,
|
126 |
-
quantization_config=quantization_config,
|
127 |
-
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
|
128 |
-
device_map="auto" if self.device == "cuda" else None,
|
129 |
-
trust_remote_code=True,
|
130 |
-
low_cpu_mem_usage=True
|
131 |
-
)
|
132 |
-
|
133 |
-
if self.device == "cpu":
|
134 |
-
self.model = self.model.to(self.device)
|
135 |
-
|
136 |
-
print(f"✅ Successfully loaded: {model_name}")
|
137 |
-
return # Exit after first successful model load
|
138 |
-
|
139 |
-
except Exception as e:
|
140 |
-
print(f"❌ Failed to load {model_name}: {e}")
|
141 |
-
continue
|
142 |
-
|
143 |
-
print("❌ All models failed to load")
|
144 |
-
self.model = None
|
145 |
-
self.tokenizer = None
|
146 |
-
|
147 |
-
def create_medical_chunks(self, text: str, chunk_size: int = 300) -> List[Dict]:
|
148 |
-
"""Create medically-optimized text chunks with smaller size for efficiency"""
|
149 |
-
chunks = []
|
150 |
-
|
151 |
-
# Split by medical sections first
|
152 |
-
medical_sections = self.split_by_medical_sections(text)
|
153 |
-
|
154 |
-
chunk_id = 0
|
155 |
-
for section in medical_sections:
|
156 |
-
if len(section.split()) > chunk_size:
|
157 |
-
# Split large sections by sentences
|
158 |
-
sentences = re.split(r'[.!?]+', section)
|
159 |
-
current_chunk = ""
|
160 |
-
|
161 |
-
for sentence in sentences:
|
162 |
-
sentence = sentence.strip()
|
163 |
-
if not sentence:
|
164 |
-
continue
|
165 |
-
|
166 |
-
if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
|
167 |
-
current_chunk += sentence + ". "
|
168 |
-
else:
|
169 |
-
if current_chunk.strip():
|
170 |
-
chunks.append({
|
171 |
-
'id': chunk_id,
|
172 |
-
'text': current_chunk.strip(),
|
173 |
-
'medical_focus': self.identify_medical_focus(current_chunk)
|
174 |
-
})
|
175 |
-
chunk_id += 1
|
176 |
-
current_chunk = sentence + ". "
|
177 |
-
|
178 |
-
if current_chunk.strip():
|
179 |
-
chunks.append({
|
180 |
-
'id': chunk_id,
|
181 |
-
'text': current_chunk.strip(),
|
182 |
-
'medical_focus': self.identify_medical_focus(current_chunk)
|
183 |
-
})
|
184 |
-
chunk_id += 1
|
185 |
-
else:
|
186 |
-
if section.strip(): # Don't add empty sections
|
187 |
-
chunks.append({
|
188 |
-
'id': chunk_id,
|
189 |
-
'text': section,
|
190 |
-
'medical_focus': self.identify_medical_focus(section)
|
191 |
-
})
|
192 |
-
chunk_id += 1
|
193 |
-
|
194 |
-
return chunks
|
195 |
-
|
196 |
-
def split_by_medical_sections(self, text: str) -> List[str]:
|
197 |
-
"""Split text by medical sections"""
|
198 |
-
section_patterns = [
|
199 |
-
r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
|
200 |
-
r'\n\s*\d+\.\s+',
|
201 |
-
r'\n\n+'
|
202 |
-
]
|
203 |
-
|
204 |
-
sections = [text]
|
205 |
-
for pattern in section_patterns:
|
206 |
-
new_sections = []
|
207 |
-
for section in sections:
|
208 |
-
splits = re.split(pattern, section, flags=re.IGNORECASE)
|
209 |
-
new_sections.extend([s.strip() for s in splits if len(s.strip()) > 50]) # Reduced minimum length
|
210 |
-
sections = new_sections
|
211 |
-
|
212 |
-
return sections
|
213 |
-
|
214 |
-
def identify_medical_focus(self, text: str) -> str:
|
215 |
-
"""Identify the medical focus of a text chunk"""
|
216 |
-
text_lower = text.lower()
|
217 |
-
|
218 |
-
categories = {
|
219 |
-
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea', 'child', 'baby', 'infant'],
|
220 |
-
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics', 'medicine'],
|
221 |
-
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs', 'condition'],
|
222 |
-
'emergency': ['emergency', 'urgent', 'serious', 'hospital', 'call doctor'],
|
223 |
-
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid', 'prevent']
|
224 |
-
}
|
225 |
-
|
226 |
-
for category, keywords in categories.items():
|
227 |
-
if any(keyword in text_lower for keyword in keywords):
|
228 |
-
return category
|
229 |
-
|
230 |
-
return 'general_medical'
|
231 |
-
|
232 |
-
def load_medical_data_from_file(self, file_path: str) -> Tuple[str, bool]:
|
233 |
-
"""Load medical data from uploaded file with better error handling"""
|
234 |
-
if not file_path or not os.path.exists(file_path):
|
235 |
-
return "❌ No file uploaded or file not found.", False
|
236 |
-
|
237 |
-
try:
|
238 |
-
print(f"🔄 Processing file: {file_path}")
|
239 |
-
|
240 |
-
# Read file with encoding detection
|
241 |
-
encodings_to_try = ['utf-8', 'utf-8-sig', 'latin-1', 'cp1252']
|
242 |
-
text = None
|
243 |
-
|
244 |
-
for encoding in encodings_to_try:
|
245 |
-
try:
|
246 |
-
with open(file_path, 'r', encoding=encoding) as f:
|
247 |
-
text = f.read()
|
248 |
-
print(f"✅ File read successfully with {encoding} encoding")
|
249 |
-
break
|
250 |
-
except UnicodeDecodeError:
|
251 |
-
continue
|
252 |
-
|
253 |
-
if text is None:
|
254 |
-
return "❌ Could not read file. Please ensure it's a valid text file.", False
|
255 |
-
|
256 |
-
if len(text.strip()) < 100:
|
257 |
-
return "❌ File appears to be too short or empty. Please upload a substantial medical text.", False
|
258 |
-
|
259 |
-
# Create chunks
|
260 |
-
print("🔄 Creating medical chunks...")
|
261 |
-
chunks = self.create_medical_chunks(text)
|
262 |
-
|
263 |
-
if not chunks:
|
264 |
-
return "❌ No valid medical content found in the file.", False
|
265 |
-
|
266 |
-
self.knowledge_chunks = chunks
|
267 |
-
print(f"✅ Created {len(chunks)} chunks")
|
268 |
-
|
269 |
-
# Generate embeddings if available
|
270 |
-
if self.use_embeddings and self.embedding_model and self.faiss_ready:
|
271 |
-
print("🔄 Generating embeddings...")
|
272 |
-
success = self.generate_embeddings_and_index(chunks)
|
273 |
-
if success:
|
274 |
-
self.is_data_loaded = True
|
275 |
-
return f"✅ Medical data loaded successfully! {len(chunks)} chunks processed with vector search.", True
|
276 |
-
|
277 |
-
self.is_data_loaded = True
|
278 |
-
return f"✅ Medical data loaded successfully! {len(chunks)} chunks processed (keyword search mode).", True
|
279 |
-
|
280 |
-
except Exception as e:
|
281 |
-
print(f"❌ Error processing file: {e}")
|
282 |
-
return f"❌ Error loading file: {str(e)}", False
|
283 |
-
|
284 |
-
def generate_embeddings_and_index(self, chunks: List[Dict]) -> bool:
|
285 |
-
"""Generate embeddings and add to FAISS index with error handling"""
|
286 |
-
try:
|
287 |
-
print("🔄 Generating embeddings...")
|
288 |
-
texts = [chunk['text'] for chunk in chunks]
|
289 |
-
|
290 |
-
# Process in batches to avoid memory issues
|
291 |
-
batch_size = 32
|
292 |
-
all_embeddings = []
|
293 |
-
|
294 |
-
for i in range(0, len(texts), batch_size):
|
295 |
-
batch_texts = texts[i:i+batch_size]
|
296 |
-
batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
|
297 |
-
all_embeddings.append(batch_embeddings)
|
298 |
-
|
299 |
-
embeddings = np.vstack(all_embeddings)
|
300 |
-
self.faiss_index.add(embeddings.astype('float32'))
|
301 |
-
print(f"✅ Added {len(embeddings)} embeddings to FAISS index")
|
302 |
-
return True
|
303 |
-
|
304 |
-
except Exception as e:
|
305 |
-
print(f"❌ Embedding generation failed: {e}")
|
306 |
-
return False
|
307 |
-
|
308 |
-
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
|
309 |
-
"""Retrieve relevant medical context with fallback"""
|
310 |
-
if not self.knowledge_chunks:
|
311 |
-
return []
|
312 |
-
|
313 |
-
if self.use_embeddings and self.embedding_model and self.faiss_ready:
|
314 |
-
try:
|
315 |
-
query_embedding = self.embedding_model.encode([query])
|
316 |
-
distances, indices = self.faiss_index.search(query_embedding.astype('float32'), n_results)
|
317 |
-
context_chunks = []
|
318 |
-
for i in indices[0]:
|
319 |
-
if i != -1 and i < len(self.knowledge_chunks):
|
320 |
-
context_chunks.append(self.knowledge_chunks[i]['text'])
|
321 |
-
|
322 |
-
if context_chunks:
|
323 |
-
return context_chunks
|
324 |
-
except Exception as e:
|
325 |
-
print(f"❌ Embedding search failed: {e}")
|
326 |
-
|
327 |
-
# Fallback to keyword search
|
328 |
-
return self.keyword_search_medical(query, n_results)
|
329 |
-
|
330 |
-
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
|
331 |
-
"""Medical-focused keyword search"""
|
332 |
-
if not self.knowledge_chunks:
|
333 |
-
return []
|
334 |
-
|
335 |
-
query_words = set(query.lower().split())
|
336 |
-
chunk_scores = []
|
337 |
-
|
338 |
-
for chunk_info in self.knowledge_chunks:
|
339 |
-
chunk_text = chunk_info['text']
|
340 |
-
chunk_words = set(chunk_text.lower().split())
|
341 |
-
|
342 |
-
word_overlap = len(query_words.intersection(chunk_words))
|
343 |
-
base_score = word_overlap / len(query_words) if query_words else 0
|
344 |
-
|
345 |
-
# Boost medical content
|
346 |
-
medical_boost = 0
|
347 |
-
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
|
348 |
-
medical_boost = 0.3
|
349 |
-
|
350 |
-
final_score = base_score + medical_boost
|
351 |
-
|
352 |
-
if final_score > 0:
|
353 |
-
chunk_scores.append((final_score, chunk_text))
|
354 |
-
|
355 |
-
chunk_scores.sort(reverse=True)
|
356 |
-
return [chunk for _, chunk in chunk_scores[:n_results]]
|
357 |
-
|
358 |
-
def generate_biogpt_response(self, context: str, query: str) -> str:
|
359 |
-
"""Generate medical response using loaded model"""
|
360 |
-
if not self.model or not self.tokenizer:
|
361 |
-
return "Medical AI model is not available. Using fallback response based on retrieved context."
|
362 |
-
|
363 |
-
try:
|
364 |
-
# Simplified prompt for better compatibility
|
365 |
-
prompt = f"Context: {context[:600]}\n\nQuestion: {query}\n\nAnswer:"
|
366 |
-
|
367 |
-
inputs = self.tokenizer(
|
368 |
-
prompt,
|
369 |
-
return_tensors="pt",
|
370 |
-
truncation=True,
|
371 |
-
max_length=512, # Reduced for efficiency
|
372 |
-
padding=True
|
373 |
-
)
|
374 |
-
|
375 |
-
if self.device == "cuda":
|
376 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
377 |
-
|
378 |
-
with torch.no_grad():
|
379 |
-
outputs = self.model.generate(
|
380 |
-
**inputs,
|
381 |
-
max_new_tokens=100, # Reduced for efficiency
|
382 |
-
do_sample=True,
|
383 |
-
temperature=0.7,
|
384 |
-
top_p=0.9,
|
385 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
386 |
-
repetition_penalty=1.1,
|
387 |
-
no_repeat_ngram_size=3
|
388 |
-
)
|
389 |
-
|
390 |
-
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
391 |
-
|
392 |
-
if "Answer:" in full_response:
|
393 |
-
generated_response = full_response.split("Answer:")[-1].strip()
|
394 |
-
else:
|
395 |
-
generated_response = full_response[len(prompt):].strip()
|
396 |
-
|
397 |
-
return self.clean_medical_response(generated_response) if generated_response else self.fallback_response(context, query)
|
398 |
-
|
399 |
-
except Exception as e:
|
400 |
-
print(f"❌ Generation failed: {e}")
|
401 |
-
return self.fallback_response(context, query)
|
402 |
-
|
403 |
-
def clean_medical_response(self, response: str) -> str:
|
404 |
-
"""Clean and format medical response"""
|
405 |
-
if not response:
|
406 |
-
return "I couldn't generate a specific response. Please consult a healthcare professional."
|
407 |
-
|
408 |
-
# Remove incomplete sentences and clean up
|
409 |
-
sentences = re.split(r'[.!?]+', response)
|
410 |
-
clean_sentences = []
|
411 |
-
|
412 |
-
for sentence in sentences:
|
413 |
-
sentence = sentence.strip()
|
414 |
-
if len(sentence) > 15 and not sentence.endswith(('and', 'or', 'but', 'however', 'the', 'a', 'an')):
|
415 |
-
clean_sentences.append(sentence)
|
416 |
-
if len(clean_sentences) >= 2: # Limit to 2 sentences for clarity
|
417 |
-
break
|
418 |
-
|
419 |
-
if clean_sentences:
|
420 |
-
cleaned = '. '.join(clean_sentences) + '.'
|
421 |
-
else:
|
422 |
-
cleaned = response[:150] + '...' if len(response) > 150 else response
|
423 |
-
|
424 |
-
return cleaned
|
425 |
-
|
426 |
-
def fallback_response(self, context: str, query: str) -> str:
|
427 |
-
"""Fallback response when model generation fails"""
|
428 |
-
if not context:
|
429 |
-
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional."
|
430 |
-
|
431 |
-
# Extract most relevant sentences from context
|
432 |
-
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
|
433 |
-
|
434 |
-
if sentences:
|
435 |
-
# Return first 1-2 most relevant sentences
|
436 |
-
response = sentences[0]
|
437 |
-
if len(sentences) > 1 and len(response) < 100:
|
438 |
-
response += '. ' + sentences[1]
|
439 |
-
response += '.'
|
440 |
-
else:
|
441 |
-
response = context[:200] + '...' if len(context) > 200 else context
|
442 |
-
|
443 |
-
return response
|
444 |
-
|
445 |
-
def handle_conversational_interactions(self, query: str) -> Optional[str]:
|
446 |
-
"""Handle conversational interactions"""
|
447 |
-
query_lower = query.lower().strip()
|
448 |
-
|
449 |
-
# Greetings
|
450 |
-
if query_lower in ['hello', 'hi', 'hey', 'good morning', 'good afternoon']:
|
451 |
-
if not self.is_data_loaded:
|
452 |
-
return "👋 Hello! I'm your medical AI assistant. Please upload your medical data file first, then ask me any health-related questions!"
|
453 |
-
else:
|
454 |
-
return "👋 Hello again! I'm ready to help. Ask me any medical question related to your uploaded data."
|
455 |
-
|
456 |
-
|
457 |
-
# Thanks
|
458 |
-
if any(thanks in query_lower for thanks in ['thank you', 'thanks', 'thx', 'appreciate']):
|
459 |
-
return "🙏 You're welcome! Remember to always consult healthcare professionals for medical decisions. Feel free to ask more questions!"
|
460 |
-
|
461 |
-
# Goodbyes
|
462 |
-
if any(bye in query_lower for bye in ['bye', 'goodbye', 'see you', 'farewell']):
|
463 |
-
return "👋 Goodbye! Take care and stay healthy! 🏥"
|
464 |
-
|
465 |
-
# Help/About
|
466 |
-
if any(help_word in query_lower for help_word in ['help', 'what can you do', 'how do you work']):
|
467 |
-
return """🤖 **Medical AI Assistant**
|
468 |
-
|
469 |
-
I can help with:
|
470 |
-
• Medical information and conditions
|
471 |
-
• Symptom understanding
|
472 |
-
• Treatment information
|
473 |
-
• When to seek medical care
|
474 |
-
|
475 |
-
**How to use:**
|
476 |
-
1. Upload your medical data file
|
477 |
-
2. Ask specific medical questions
|
478 |
-
3. Get evidence-based information
|
479 |
-
|
480 |
-
⚠️ **Important:** I provide educational information only. Always consult healthcare professionals for medical advice."""
|
481 |
-
|
482 |
-
return None
|
483 |
-
|
484 |
-
def chat_interface(self, message: str, history: List[List[str]]) -> Tuple[str, List[List[str]]]:
|
485 |
-
"""Main chat interface for Gradio"""
|
486 |
-
if not message.strip():
|
487 |
-
return "", history
|
488 |
-
|
489 |
-
# Check if data is loaded
|
490 |
-
if not self.is_data_loaded:
|
491 |
-
response = "⚠️ Please upload your medical data file first using the file upload above before asking questions."
|
492 |
-
history.append([message, response])
|
493 |
-
return "", history
|
494 |
-
|
495 |
-
# Handle conversational interactions
|
496 |
-
conversational_response = self.handle_conversational_interactions(message)
|
497 |
-
if conversational_response:
|
498 |
-
history.append([message, conversational_response])
|
499 |
-
return "", history
|
500 |
-
|
501 |
-
# Process medical query
|
502 |
-
try:
|
503 |
-
context = self.retrieve_medical_context(message)
|
504 |
-
|
505 |
-
if not context:
|
506 |
-
response = "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
|
507 |
-
else:
|
508 |
-
main_context = '\n\n'.join(context)
|
509 |
-
medical_response = self.generate_biogpt_response(main_context, message)
|
510 |
-
response = f"🩺 **Medical Information:** {medical_response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
|
511 |
-
|
512 |
-
# Add to conversation history
|
513 |
-
self.conversation_history.append({
|
514 |
-
'query': message,
|
515 |
-
'response': response,
|
516 |
-
'timestamp': datetime.now().isoformat()
|
517 |
-
})
|
518 |
-
|
519 |
-
history.append([message, response])
|
520 |
-
return "", history
|
521 |
-
|
522 |
-
except Exception as e:
|
523 |
-
print(f"❌ Chat interface error: {e}")
|
524 |
-
error_response = "I encountered an error processing your question. Please try again or consult a healthcare professional."
|
525 |
-
history.append([message, error_response])
|
526 |
-
return "", history
|
527 |
-
|
528 |
-
# Initialize the chatbot with error handling
|
529 |
-
print("🚀 Initializing Medical AI Assistant...")
|
530 |
-
try:
|
531 |
-
chatbot = GradioBioGPTChatbot(use_gpu=False, use_8bit=False) # CPU-optimized for HF Spaces
|
532 |
-
print("✅ Chatbot initialized successfully")
|
533 |
-
except Exception as e:
|
534 |
-
print(f"❌ Chatbot initialization failed: {e}")
|
535 |
-
chatbot = None
|
536 |
-
|
537 |
-
def upload_and_process_file(file):
|
538 |
-
"""Handle file upload and processing"""
|
539 |
-
if file is None:
|
540 |
-
return "❌ No file uploaded."
|
541 |
-
|
542 |
-
if chatbot is None:
|
543 |
-
return "❌ Chatbot not initialized properly. Please refresh the page."
|
544 |
-
|
545 |
-
try:
|
546 |
-
message, success = chatbot.load_medical_data_from_file(file)
|
547 |
-
return message
|
548 |
-
except Exception as e:
|
549 |
-
return f"❌ Error processing file: {str(e)}"
|
550 |
-
|
551 |
-
# Create Gradio Interface
|
552 |
-
def create_gradio_interface():
|
553 |
-
"""Create and launch Gradio interface"""
|
554 |
-
|
555 |
-
with gr.Blocks(
|
556 |
-
title="🏥 Medical AI Assistant",
|
557 |
-
theme=gr.themes.Soft(),
|
558 |
-
css="""
|
559 |
-
.gradio-container {
|
560 |
-
max-width: 1200px !important;
|
561 |
-
}
|
562 |
-
.chat-message {
|
563 |
-
border-radius: 10px !important;
|
564 |
-
}
|
565 |
-
"""
|
566 |
-
) as demo:
|
567 |
-
|
568 |
-
gr.HTML("""
|
569 |
-
<div style="text-align: center; padding: 20px;">
|
570 |
-
<h1>🏥 Medical AI Assistant</h1>
|
571 |
-
<p style="font-size: 18px; color: #666;">
|
572 |
-
AI-powered medical information assistant
|
573 |
-
</p>
|
574 |
-
<p style="color: #888;">
|
575 |
-
⚠️ For educational purposes only. Always consult healthcare professionals for medical advice.
|
576 |
-
</p>
|
577 |
-
</div>
|
578 |
-
""")
|
579 |
-
|
580 |
-
with gr.Row():
|
581 |
-
with gr.Column(scale=1):
|
582 |
-
gr.HTML("<h3>📁 Upload Medical Data</h3>")
|
583 |
-
file_upload = gr.File(
|
584 |
-
label="Upload Medical Text File (.txt)",
|
585 |
-
file_types=[".txt"],
|
586 |
-
type="filepath"
|
587 |
-
)
|
588 |
-
upload_status = gr.Textbox(
|
589 |
-
label="Upload Status",
|
590 |
-
value="📋 Please upload your medical data file to begin...",
|
591 |
-
interactive=False,
|
592 |
-
lines=3
|
593 |
-
)
|
594 |
-
|
595 |
-
gr.HTML("""
|
596 |
-
<div style="margin-top: 20px; padding: 15px; background-color: #f0f8ff; border-radius: 10px;">
|
597 |
-
<h4>💡 How to Use:</h4>
|
598 |
-
<ol>
|
599 |
-
<li>Upload your medical text file (.txt format)</li>
|
600 |
-
<li>Wait for processing confirmation</li>
|
601 |
-
<li>Start asking medical questions!</li>
|
602 |
-
</ol>
|
603 |
-
|
604 |
-
<h4>📝 Example Questions:</h4>
|
605 |
-
<ul>
|
606 |
-
<li>"What causes fever in children?"</li>
|
607 |
-
<li>"How to treat a persistent cough?"</li>
|
608 |
-
<li>"When should I call the doctor?"</li>
|
609 |
-
<li>"Signs of dehydration in infants?"</li>
|
610 |
-
</ul>
|
611 |
-
</div>
|
612 |
-
""")
|
613 |
-
|
614 |
-
with gr.Column(scale=2):
|
615 |
-
gr.HTML("<h3>💬 Medical Consultation</h3>")
|
616 |
-
chatbot_interface = gr.Chatbot(
|
617 |
-
label="Medical AI Chat",
|
618 |
-
height=500,
|
619 |
-
bubble_full_width=False
|
620 |
-
)
|
621 |
-
|
622 |
-
msg_input = gr.Textbox(
|
623 |
-
label="Your Medical Question",
|
624 |
-
placeholder="Ask me about health topics, symptoms, treatments, or when to seek care...",
|
625 |
-
lines=2
|
626 |
-
)
|
627 |
-
|
628 |
-
with gr.Row():
|
629 |
-
send_btn = gr.Button("🩺 Send Question", variant="primary")
|
630 |
-
clear_btn = gr.Button("🗑️ Clear Chat", variant="secondary")
|
631 |
-
|
632 |
-
# Event handlers with error handling
|
633 |
-
def safe_upload_handler(file):
|
634 |
-
try:
|
635 |
-
return upload_and_process_file(file)
|
636 |
-
except Exception as e:
|
637 |
-
return f"❌ Upload error: {str(e)}"
|
638 |
-
|
639 |
-
def safe_chat_handler(message, history):
|
640 |
-
try:
|
641 |
-
if chatbot is None:
|
642 |
-
return "", history + [[message, "❌ System error. Please refresh the page."]]
|
643 |
-
return chatbot.chat_interface(message, history)
|
644 |
-
except Exception as e:
|
645 |
-
return "", history + [[message, f"❌ Error: {str(e)}"]]
|
646 |
-
|
647 |
-
file_upload.change(
|
648 |
-
fn=safe_upload_handler,
|
649 |
-
inputs=[file_upload],
|
650 |
-
outputs=[upload_status]
|
651 |
-
)
|
652 |
-
|
653 |
-
msg_input.submit(
|
654 |
-
fn=safe_chat_handler,
|
655 |
-
inputs=[msg_input, chatbot_interface],
|
656 |
-
outputs=[msg_input, chatbot_interface]
|
657 |
-
)
|
658 |
-
|
659 |
-
send_btn.click(
|
660 |
-
fn=safe_chat_handler,
|
661 |
-
inputs=[msg_input, chatbot_interface],
|
662 |
-
outputs=[msg_input, chatbot_interface]
|
663 |
-
)
|
664 |
-
|
665 |
-
clear_btn.click(
|
666 |
-
fn=lambda: ([], ""),
|
667 |
-
outputs=[chatbot_interface, msg_input]
|
668 |
-
)
|
669 |
-
|
670 |
-
gr.HTML("""
|
671 |
-
<div style="text-align: center; margin-top: 30px; padding: 20px; background-color: #fff3cd; border-radius: 10px;">
|
672 |
-
<h4>⚠️ Medical Disclaimer</h4>
|
673 |
-
<p>This AI assistant provides educational medical information only and is not a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of qualified healthcare providers with questions about medical conditions.</p>
|
674 |
-
</div>
|
675 |
-
""")
|
676 |
-
|
677 |
-
return demo
|
678 |
-
|
679 |
-
if __name__ == "__main__":
|
680 |
-
# Create and launch the Gradio interface
|
681 |
-
demo = create_gradio_interface()
|
682 |
-
|
683 |
-
print("🌐 Launching Gradio interface...")
|
684 |
-
print("📋 Upload your medical data file and start chatting!")
|
685 |
-
|
686 |
-
# Launch with HF Spaces optimized settings
|
687 |
-
demo.launch(
|
688 |
-
share=False,
|
689 |
-
server_name="0.0.0.0",
|
690 |
-
server_port=7860,
|
691 |
-
show_error=True,
|
692 |
-
show_tips=False,
|
693 |
-
enable_queue=True,
|
694 |
-
max_threads=40
|
695 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|