Blaiseboy commited on
Commit
7520cea
Β·
verified Β·
1 Parent(s): ab05b0c

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +902 -0
app.py ADDED
@@ -0,0 +1,902 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import torch
4
+ import warnings
5
+ import numpy as np
6
+ import gradio as gr
7
+ from transformers import (
8
+ AutoTokenizer,
9
+ AutoModelForCausalLM,
10
+ BitsAndBytesConfig
11
+ )
12
+ from sentence_transformers import SentenceTransformer
13
+ from typing import List, Dict, Optional
14
+ import time
15
+ from datetime import datetime
16
+
17
+ # Suppress warnings
18
+ warnings.filterwarnings('ignore')
19
+
20
+ class BioGPTMedicalChatbot:
21
+ def __init__(self):
22
+ """Initialize BioGPT chatbot for Gradio deployment"""
23
+ print("πŸ₯ Initializing BioGPT Pediatric Pulmonology Chatbot...")
24
+
25
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
26
+ self.use_8bit = torch.cuda.is_available()
27
+
28
+ print(f"πŸ–₯️ Using device: {self.device}")
29
+
30
+ # Setup components
31
+ self.setup_embeddings()
32
+ self.setup_biogpt()
33
+
34
+ # Knowledge base and conversation tracking
35
+ self.knowledge_chunks = []
36
+ self.conversation_history = []
37
+
38
+ # Load default medical knowledge first
39
+ self.load_default_medical_knowledge()
40
+
41
+ # Try to load your specific pediatric pulmonology data
42
+ self.load_pediatric_pulmonology_data()
43
+
44
+ print("βœ… BioGPT Pediatric Pulmonology Chatbot ready!")
45
+
46
+ def load_pediatric_pulmonology_data(self):
47
+ """Auto-load pediatric pulmonology data from uploaded file"""
48
+ pulmonology_files = [
49
+ 'Pediatric_cleaned.txt',
50
+ 'pediatric_cleaned.txt',
51
+ 'Pediatric_Cleaned.txt',
52
+ 'pediatric_pulmonology.txt',
53
+ 'pulmonology_data.txt'
54
+ ]
55
+
56
+ for filename in pulmonology_files:
57
+ if os.path.exists(filename):
58
+ print(f"πŸ“– Found pediatric pulmonology data: {filename}")
59
+ try:
60
+ success = self.load_medical_data(filename)
61
+ if success:
62
+ print(f"βœ… Successfully loaded {filename} with pulmonology data!")
63
+ print(f"πŸ“Š Total knowledge chunks: {len(self.knowledge_chunks)}")
64
+ return True
65
+ except Exception as e:
66
+ print(f"⚠️ Failed to load {filename}: {e}")
67
+ continue
68
+
69
+ print("⚠️ No pediatric pulmonology data file found.")
70
+ print(" Expected files: Pediatric_cleaned.txt")
71
+ print(" Using default pediatric knowledge only.")
72
+ print(f"πŸ“Š Current knowledge chunks: {len(self.knowledge_chunks)}")
73
+ return False
74
+
75
+ def load_medical_data(self, file_path: str):
76
+ """Load and process medical data from text file"""
77
+ print(f"πŸ“– Loading medical data from {file_path}...")
78
+
79
+ try:
80
+ with open(file_path, 'r', encoding='utf-8') as f:
81
+ text = f.read()
82
+ print(f"πŸ“„ File loaded: {len(text):,} characters")
83
+ except FileNotFoundError:
84
+ print(f"❌ File {file_path} not found!")
85
+ return False
86
+ except Exception as e:
87
+ print(f"❌ Error reading file: {e}")
88
+ return False
89
+
90
+ # Create chunks optimized for medical content
91
+ print("πŸ“ Creating pediatric pulmonology chunks...")
92
+ new_chunks = self.create_medical_chunks_from_text(text)
93
+ print(f"πŸ“‹ Created {len(new_chunks)} new medical chunks from file")
94
+
95
+ # Add to existing knowledge chunks (don't replace, append)
96
+ starting_id = len(self.knowledge_chunks)
97
+ for i, chunk in enumerate(new_chunks):
98
+ chunk['id'] = starting_id + i
99
+ chunk['source'] = 'pediatric_pulmonology_file'
100
+
101
+ self.knowledge_chunks.extend(new_chunks)
102
+
103
+ print(f"βœ… Medical data loaded successfully!")
104
+ print(f"πŸ“Š Total knowledge chunks: {len(self.knowledge_chunks)}")
105
+ return True
106
+
107
+ def create_medical_chunks_from_text(self, text: str, chunk_size: int = 400) -> List[Dict]:
108
+ """Create medically-optimized text chunks from uploaded file"""
109
+ chunks = []
110
+
111
+ # Clean the text first - remove XML/HTML tags and formatting artifacts
112
+ cleaned_text = self.clean_medical_text(text)
113
+
114
+ # Split by medical sections first
115
+ medical_sections = self.split_by_medical_sections(cleaned_text)
116
+
117
+ for section in medical_sections:
118
+ if len(section.split()) > chunk_size:
119
+ # Split large sections by sentences
120
+ sentences = re.split(r'[.!?]+', section)
121
+ current_chunk = ""
122
+
123
+ for sentence in sentences:
124
+ sentence = sentence.strip()
125
+ if not sentence:
126
+ continue
127
+
128
+ if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
129
+ current_chunk += sentence + ". "
130
+ else:
131
+ if current_chunk.strip():
132
+ chunks.append({
133
+ 'text': current_chunk.strip(),
134
+ 'medical_focus': self.identify_medical_focus(current_chunk)
135
+ })
136
+ current_chunk = sentence + ". "
137
+
138
+ if current_chunk.strip():
139
+ chunks.append({
140
+ 'text': current_chunk.strip(),
141
+ 'medical_focus': self.identify_medical_focus(current_chunk)
142
+ })
143
+ else:
144
+ if section.strip():
145
+ chunks.append({
146
+ 'text': section.strip(),
147
+ 'medical_focus': self.identify_medical_focus(section)
148
+ })
149
+
150
+ return chunks
151
+
152
+ def clean_medical_text(self, text: str) -> str:
153
+ """Clean medical text from formatting artifacts and XML tags"""
154
+ # Remove XML/HTML tags like </FREETEXT>, </ABSTRACT>, <SECTION>, etc.
155
+ text = re.sub(r'<[^>]+>', '', text)
156
+
157
+ # Remove common document formatting artifacts
158
+ text = re.sub(r'</?\s*FREETEXT\s*>', '', text, flags=re.IGNORECASE)
159
+ text = re.sub(r'</?\s*ABSTRACT\s*>', '', text, flags=re.IGNORECASE)
160
+ text = re.sub(r'</?\s*SECTION\s*>', '', text, flags=re.IGNORECASE)
161
+ text = re.sub(r'</?\s*TITLE\s*>', '', text, flags=re.IGNORECASE)
162
+
163
+ # Remove excessive whitespace and newlines
164
+ text = re.sub(r'\n\s*\n\s*\n+', '\n\n', text)
165
+ text = re.sub(r'\s+', ' ', text)
166
+
167
+ # Remove special characters that might be formatting artifacts
168
+ text = re.sub(r'[^\w\s.,;:!?()\-\'/"]', ' ', text)
169
+
170
+ # Clean up multiple spaces
171
+ text = re.sub(r'\s+', ' ', text).strip()
172
+
173
+ return text
174
+
175
+ def split_by_medical_sections(self, text: str) -> List[str]:
176
+ """Split text by medical sections"""
177
+ # Look for medical section headers
178
+ section_patterns = [
179
+ r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
180
+ r'\n\s*\d+\.\s+', # Numbered sections
181
+ r'\n\n+' # Paragraph breaks
182
+ ]
183
+
184
+ sections = [text]
185
+ for pattern in section_patterns:
186
+ new_sections = []
187
+ for section in sections:
188
+ splits = re.split(pattern, section, flags=re.IGNORECASE)
189
+ new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
190
+ sections = new_sections
191
+
192
+ return sections
193
+
194
+ def identify_medical_focus(self, text: str) -> str:
195
+ """Identify the medical focus of a text chunk with pulmonology emphasis"""
196
+ text_lower = text.lower()
197
+
198
+ # Enhanced medical categories with pulmonology focus
199
+ categories = {
200
+ 'pediatric_pulmonology': [
201
+ 'asthma', 'pneumonia', 'bronchiolitis', 'croup', 'respiratory', 'lung', 'airway',
202
+ 'breathing', 'cough', 'wheeze', 'stridor', 'pneumothorax', 'pleural', 'ventilator',
203
+ 'oxygen', 'respiratory distress', 'bronchitis', 'pulmonary', 'chest', 'inhaler'
204
+ ],
205
+ 'pediatric_symptoms': ['fever', 'rash', 'vomiting', 'diarrhea', 'pain'],
206
+ 'treatments': ['treatment', 'therapy', 'medication', 'antibiotics', 'steroid'],
207
+ 'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs', 'test'],
208
+ 'emergency': ['emergency', 'urgent', 'serious', 'hospital', 'icu'],
209
+ 'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
210
+ }
211
+
212
+ for category, keywords in categories.items():
213
+ if any(keyword in text_lower for keyword in keywords):
214
+ return category
215
+
216
+ return 'general_medical'
217
+
218
+ def setup_embeddings(self):
219
+ """Setup medical embeddings"""
220
+ try:
221
+ print("πŸ”§ Loading embeddings...")
222
+ self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
223
+ self.use_embeddings = True
224
+ print("βœ… Embeddings loaded successfully")
225
+ except Exception as e:
226
+ print(f"⚠️ Embeddings failed: {e}")
227
+ self.embedding_model = None
228
+ self.use_embeddings = False
229
+
230
+ def setup_biogpt(self):
231
+ """Setup BioGPT model with better fallback strategy"""
232
+ print("🧠 Loading BioGPT model...")
233
+
234
+ # Try more stable models first
235
+ models_to_try = [
236
+ "microsoft/DialoGPT-medium", # Most stable conversational model
237
+ "microsoft/DialoGPT-small", # Smaller backup
238
+ "gpt2-medium", # General GPT-2 backup
239
+ "microsoft/BioGPT" # BioGPT if available
240
+ ]
241
+
242
+ for model_name in models_to_try:
243
+ try:
244
+ print(f" Trying {model_name}...")
245
+
246
+ # Load tokenizer first
247
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
248
+ if self.tokenizer.pad_token is None:
249
+ self.tokenizer.pad_token = self.tokenizer.eos_token
250
+
251
+ # Load model with conservative settings
252
+ self.model = AutoModelForCausalLM.from_pretrained(
253
+ model_name,
254
+ torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
255
+ device_map="auto" if self.device == "cuda" else None,
256
+ trust_remote_code=True,
257
+ low_cpu_mem_usage=True
258
+ )
259
+
260
+ if self.device == "cuda":
261
+ self.model = self.model.to(self.device)
262
+
263
+ print(f"βœ… Successfully loaded {model_name}!")
264
+ self.model_name = model_name
265
+ return
266
+
267
+ except Exception as e:
268
+ print(f"❌ Failed to load {model_name}: {e}")
269
+ continue
270
+
271
+ # If all models fail - use rule-based fallback
272
+ print("❌ All models failed to load - using rule-based responses")
273
+ self.model = None
274
+ self.tokenizer = None
275
+ self.model_name = "Rule-based fallback"
276
+
277
+ def load_default_medical_knowledge(self):
278
+ """Load comprehensive default medical knowledge base"""
279
+ default_knowledge = [
280
+ {
281
+ 'id': 0,
282
+ 'text': "Fever in children is commonly caused by viral infections (most common), bacterial infections, immunizations, teething in infants, or overdressing. Normal body temperature ranges from 97Β°F to 100.4Β°F (36.1Β°C to 38Β°C). A fever is generally considered when oral temperature exceeds 100.4Β°F (38Β°C). Most fevers are not dangerous and help the body fight infection. Treatment includes rest, fluids, and fever reducers like acetaminophen or ibuprofen for comfort.",
283
+ 'medical_focus': 'pediatric_symptoms',
284
+ 'source': 'default_knowledge'
285
+ },
286
+ {
287
+ 'id': 1,
288
+ 'text': "Dehydration in infants and children can occur rapidly, especially during illness with vomiting or diarrhea. Warning signs include: dry mouth and tongue, decreased urination, lethargy or irritability, sunken eyes, and in infants under 12 months, sunken fontanelle (soft spot). Mild dehydration can be treated with oral rehydration solutions or clear fluids. Severe dehydration requires immediate medical attention.",
289
+ 'medical_focus': 'pediatric_symptoms',
290
+ 'source': 'default_knowledge'
291
+ },
292
+ {
293
+ 'id': 2,
294
+ 'text': "Common cold symptoms in children include runny or stuffy nose, cough, low-grade fever, sneezing, and general fussiness. Most colds are viral and resolve within 7-10 days without specific treatment. Treatment focuses on comfort measures: rest, adequate fluids, humidified air, and saline nasal drops for congestion. Antibiotics are not effective against viral colds.",
295
+ 'medical_focus': 'pediatric_symptoms',
296
+ 'source': 'default_knowledge'
297
+ },
298
+ {
299
+ 'id': 3,
300
+ 'text': "Emergency warning signs in children requiring immediate medical attention include: severe difficulty breathing, persistent high fever over 104Β°F (40Β°C), signs of severe dehydration, persistent vomiting preventing fluid intake, severe headache with neck stiffness, altered consciousness or extreme lethargy, severe abdominal pain, or any concerning change in behavior. When in doubt, seek medical care.",
301
+ 'medical_focus': 'emergency',
302
+ 'source': 'default_knowledge'
303
+ },
304
+ {
305
+ 'id': 4,
306
+ 'text': "Childhood vaccination schedules protect against serious diseases including measles, mumps, rubella, polio, hepatitis B, Haemophilus influenzae, pneumococcal disease, and others. Vaccines are rigorously tested for safety and effectiveness. Side effects are typically mild, such as low-grade fever or soreness at injection site. Following recommended vaccination schedules protects individual children and the community.",
307
+ 'medical_focus': 'prevention',
308
+ 'source': 'default_knowledge'
309
+ },
310
+ {
311
+ 'id': 5,
312
+ 'text': "Persistent cough in children can be caused by viral upper respiratory infections, asthma, allergies, bacterial infections, or irritants. Most coughs from colds resolve within 2-3 weeks. Seek medical evaluation for coughs lasting more than 3 weeks, coughs with blood, difficulty breathing, or coughs severely interfering with sleep. Treatment depends on the underlying cause.",
313
+ 'medical_focus': 'pediatric_symptoms',
314
+ 'source': 'default_knowledge'
315
+ },
316
+ {
317
+ 'id': 6,
318
+ 'text': "Asthma in children is a chronic respiratory condition affecting the airways, causing them to become inflamed, narrow, and produce excess mucus. Common triggers include viral infections, allergens (dust mites, pollen, pet dander), irritants (smoke, strong odors), cold air, and exercise. Symptoms include wheezing, cough (especially at night), shortness of breath, and chest tightness. Management includes avoiding triggers, using prescribed inhalers, and having an asthma action plan.",
319
+ 'medical_focus': 'pediatric_pulmonology',
320
+ 'source': 'default_knowledge'
321
+ },
322
+ {
323
+ 'id': 7,
324
+ 'text': "Bronchiolitis is a common respiratory infection in infants and young children, typically caused by respiratory syncytial virus (RSV). It affects the small airways (bronchioles) in the lungs, causing inflammation and mucus buildup. Symptoms include runny nose, cough, low-grade fever, and difficulty breathing. Most cases are mild and resolve with supportive care, but severe cases may require hospitalization for oxygen support.",
325
+ 'medical_focus': 'pediatric_pulmonology',
326
+ 'source': 'default_knowledge'
327
+ },
328
+ {
329
+ 'id': 8,
330
+ 'text': "Pneumonia in children is an infection that inflames air sacs in one or both lungs, which may fill with fluid. It can be caused by bacteria, viruses, or fungi. Symptoms include cough with phlegm, fever, chills, and difficulty breathing. Bacterial pneumonia often requires antibiotic treatment, while viral pneumonia typically resolves with supportive care. Seek medical attention for persistent fever, difficulty breathing, or worsening symptoms.",
331
+ 'medical_focus': 'pediatric_pulmonology',
332
+ 'source': 'default_knowledge'
333
+ },
334
+ {
335
+ 'id': 9,
336
+ 'text': "Croup is a respiratory condition that causes swelling around the vocal cords. It's most common in children between 6 months and 6 years old. Symptoms include a distinctive barking cough, stridor (harsh sound when breathing in), hoarse voice, and difficulty breathing. Most cases are mild and can be treated at home with humidified air and staying calm. Severe cases with significant breathing difficulty require immediate medical attention.",
337
+ 'medical_focus': 'pediatric_pulmonology',
338
+ 'source': 'default_knowledge'
339
+ }
340
+ ]
341
+
342
+ self.knowledge_chunks = default_knowledge
343
+ print(f"πŸ“š Loaded {len(default_knowledge)} default medical knowledge chunks")
344
+
345
+ def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
346
+ """Retrieve relevant medical context using improved keyword search with pulmonology priority"""
347
+ if not self.knowledge_chunks:
348
+ return []
349
+
350
+ query_lower = query.lower()
351
+ query_words = set(query_lower.split())
352
+ chunk_scores = []
353
+
354
+ # Enhanced medical keyword mapping with pulmonology emphasis
355
+ medical_keywords = {
356
+ 'pulmonology': ['asthma', 'pneumonia', 'bronchiolitis', 'croup', 'respiratory', 'lung', 'airway', 'breathing', 'cough', 'wheeze', 'stridor'],
357
+ 'fever': ['fever', 'temperature', 'hot', 'warm', 'burning'],
358
+ 'stomach': ['stomach', 'abdominal', 'belly', 'tummy', 'pain', 'ache'],
359
+ 'rash': ['rash', 'skin', 'red', 'spots', 'bumps', 'itchy'],
360
+ 'vomiting': ['vomit', 'vomiting', 'throw up', 'sick', 'nausea'],
361
+ 'diarrhea': ['diarrhea', 'loose', 'stool', 'bowel', 'poop'],
362
+ 'dehydration': ['dehydration', 'dehydrated', 'fluids', 'water', 'thirsty'],
363
+ 'emergency': ['emergency', 'urgent', 'serious', 'severe', 'hospital', 'doctor']
364
+ }
365
+
366
+ # Expand query with related medical terms
367
+ expanded_query_words = set(query_words)
368
+ for medical_term, synonyms in medical_keywords.items():
369
+ if any(word in query_lower for word in synonyms):
370
+ expanded_query_words.update(synonyms)
371
+
372
+ for chunk_info in self.knowledge_chunks:
373
+ chunk_text = chunk_info['text'].lower()
374
+
375
+ # Calculate relevance score with expanded terms
376
+ word_overlap = sum(1 for word in expanded_query_words if word in chunk_text)
377
+ base_score = word_overlap / len(expanded_query_words) if expanded_query_words else 0
378
+
379
+ # Strong boost for pulmonology content
380
+ medical_boost = 0
381
+ medical_focus = chunk_info.get('medical_focus', '')
382
+ source = chunk_info.get('source', '')
383
+
384
+ if medical_focus == 'pediatric_pulmonology':
385
+ medical_boost = 0.8 # Highest priority for pulmonology
386
+ elif source == 'pediatric_pulmonology_file':
387
+ medical_boost = 0.7 # High priority for your uploaded data
388
+ elif medical_focus == 'emergency':
389
+ medical_boost = 0.4
390
+ elif medical_focus in ['treatments', 'diagnosis']:
391
+ medical_boost = 0.3
392
+ elif medical_focus == 'pediatric_symptoms':
393
+ medical_boost = 0.5
394
+
395
+ final_score = base_score + medical_boost
396
+
397
+ if final_score > 0:
398
+ chunk_scores.append((final_score, chunk_info['text']))
399
+
400
+ # Return top matches - prioritize pulmonology content
401
+ chunk_scores.sort(reverse=True)
402
+ results = [chunk for _, chunk in chunk_scores[:n_results]]
403
+
404
+ # If no good matches, return some default medical chunks
405
+ if not results:
406
+ results = [chunk['text'] for chunk in self.knowledge_chunks[:2]]
407
+
408
+ return results
409
+
410
+ def generate_biogpt_response(self, context: str, query: str) -> str:
411
+ """Generate medical response - with rule-based fallback if model fails"""
412
+
413
+ # If no model is loaded, use rule-based response
414
+ if not self.model or not self.tokenizer:
415
+ return self.generate_rule_based_response(context, query)
416
+
417
+ try:
418
+ # Create medical prompt
419
+ prompt = f"Medical Question: {query}\n\nMedical Information: {context[:300]}\n\nAnswer:"
420
+
421
+ # Tokenize with conservative limits
422
+ inputs = self.tokenizer(
423
+ prompt,
424
+ return_tensors="pt",
425
+ truncation=True,
426
+ max_length=400, # Very conservative
427
+ padding=True
428
+ )
429
+
430
+ # Move to device
431
+ if self.device == "cuda":
432
+ inputs = {k: v.to(self.device) for k, v in inputs.items()}
433
+
434
+ # Generate with conservative settings
435
+ with torch.no_grad():
436
+ outputs = self.model.generate(
437
+ **inputs,
438
+ max_new_tokens=100, # Conservative
439
+ do_sample=True,
440
+ temperature=0.3, # Low temperature
441
+ top_p=0.8,
442
+ top_k=30,
443
+ pad_token_id=self.tokenizer.eos_token_id,
444
+ eos_token_id=self.tokenizer.eos_token_id,
445
+ repetition_penalty=1.1,
446
+ early_stopping=True
447
+ )
448
+
449
+ # Decode response
450
+ full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
451
+
452
+ # Extract generated part
453
+ if "Answer:" in full_response:
454
+ generated_response = full_response.split("Answer:")[-1].strip()
455
+ else:
456
+ generated_response = full_response[len(prompt):].strip()
457
+
458
+ # Simple cleaning - less aggressive
459
+ cleaned_response = self.simple_clean_response(generated_response)
460
+
461
+ # If too short, use rule-based fallback
462
+ if len(cleaned_response.strip()) < 30:
463
+ return self.generate_rule_based_response(context, query)
464
+
465
+ return cleaned_response
466
+
467
+ except Exception as e:
468
+ print(f"⚠️ Model generation failed: {e}")
469
+ return self.generate_rule_based_response(context, query)
470
+
471
+ def simple_clean_response(self, response: str) -> str:
472
+ """Simple, less aggressive cleaning"""
473
+ # Remove obvious artifacts
474
+ response = re.sub(r'<[^>]*>', '', response)
475
+ response = re.sub(r'[β–ƒβ–„β–…β–†β–‡β–ˆβ–‰β–Šβ–‹β–Œβ–β–Žβ–β–β–‘β–’β–“β–”β–•β––β–—β–˜β–™β–šβ–›β–œβ–β–žβ–Ÿ]', '', response)
476
+
477
+ # Clean whitespace
478
+ response = re.sub(r'\s+', ' ', response).strip()
479
+
480
+ # Take first reasonable sentences
481
+ sentences = re.split(r'[.!?]+', response)
482
+ good_sentences = []
483
+
484
+ for sentence in sentences:
485
+ sentence = sentence.strip()
486
+ if len(sentence) > 5 and len(sentence.split()) >= 2:
487
+ good_sentences.append(sentence)
488
+ if len(good_sentences) >= 2: # Max 2 sentences
489
+ break
490
+
491
+ if good_sentences:
492
+ result = '. '.join(good_sentences)
493
+ if not result.endswith('.'):
494
+ result += '.'
495
+ return result
496
+
497
+ return response[:200] if response else ""
498
+
499
+ def generate_rule_based_response(self, context: str, query: str) -> str:
500
+ """Generate rule-based medical response when model fails"""
501
+ query_lower = query.lower()
502
+
503
+ # Use the context to generate a response
504
+ if context:
505
+ # Find the most relevant sentence from context
506
+ context_sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
507
+
508
+ if context_sentences:
509
+ # Get first 1-2 relevant sentences
510
+ response_sentences = context_sentences[:2]
511
+ response = '. '.join(response_sentences)
512
+ if not response.endswith('.'):
513
+ response += '.'
514
+
515
+ # Add appropriate medical advice
516
+ if any(word in query_lower for word in ['emergency', 'urgent', 'severe', 'serious']):
517
+ response += " If symptoms are severe or concerning, seek immediate medical attention."
518
+ else:
519
+ response += " Always consult with a healthcare provider for personalized medical advice."
520
+
521
+ return response
522
+
523
+ # Fallback responses based on keywords
524
+ keyword_responses = {
525
+ 'asthma': "Asthma in children is a chronic respiratory condition that causes airway inflammation and narrowing. Common symptoms include wheezing, cough, shortness of breath, and chest tightness. Management typically involves avoiding triggers, using prescribed medications like inhalers, and having an asthma action plan. Regular follow-up with healthcare providers is important for optimal control.",
526
+
527
+ 'pneumonia': "Pneumonia is a lung infection that can be caused by bacteria, viruses, or other organisms. In children, symptoms may include fever, cough, difficulty breathing, and chest pain. Treatment depends on the cause - bacterial pneumonia typically requires antibiotics, while viral pneumonia is managed with supportive care. Seek medical evaluation for persistent fever or breathing difficulties.",
528
+
529
+ 'bronchiolitis': "Bronchiolitis is a common respiratory infection in infants and young children, usually caused by viruses like RSV. It affects the small airways in the lungs. Symptoms include runny nose, cough, fever, and difficulty breathing. Most cases are mild and resolve with supportive care, but some children may need hospitalization for breathing support.",
530
+
531
+ 'croup': "Croup causes swelling around the vocal cords and is characterized by a distinctive barking cough and harsh breathing sounds (stridor). It's most common in children 6 months to 6 years old. Most cases are mild and can be managed at home with humidified air. Seek immediate care if breathing becomes severely difficult.",
532
+
533
+ 'fever': "Fever in children is usually a sign that the body is fighting an infection. Most fevers are not dangerous and can be managed with rest, fluids, and appropriate fever reducers if needed for comfort. Seek medical care for very high fevers (over 104Β°F), fevers in infants under 3 months, or if the child appears very ill.",
534
+
535
+ 'cough': "Cough in children can have many causes including viral infections, asthma, allergies, or bacterial infections. Most coughs from colds resolve within 2-3 weeks. Seek medical evaluation for persistent coughs lasting more than 3 weeks, coughs with blood, or coughs that significantly interfere with sleep or daily activities."
536
+ }
537
+
538
+ # Check for keyword matches
539
+ for keyword, response in keyword_responses.items():
540
+ if keyword in query_lower:
541
+ return response
542
+
543
+ # Generic medical response
544
+ return "For specific medical concerns, it's important to consult with a qualified healthcare provider who can evaluate your child's individual situation. They can provide appropriate diagnosis, treatment recommendations, and guidance based on your child's specific symptoms and medical history."
545
+
546
+ def handle_conversational_interactions(self, query: str) -> Optional[str]:
547
+ """Handle conversational interactions"""
548
+ query_lower = query.lower().strip()
549
+
550
+ # Greeting patterns
551
+ exact_greetings = [
552
+ 'hello', 'hi', 'hey', 'good morning', 'good afternoon',
553
+ 'good evening', 'how are you', 'how are you doing'
554
+ ]
555
+
556
+ if query_lower in exact_greetings:
557
+ return "πŸ‘‹ Hello! I'm BioGPT, your AI medical assistant specialized in pediatric pulmonology. I provide evidence-based medical information about children's respiratory health. What can I help you with today?"
558
+
559
+ # Thanks patterns
560
+ thanks_only = ['thank you', 'thanks', 'thank you so much', 'thanks a lot']
561
+ if query_lower in thanks_only:
562
+ return "πŸ™ You're welcome! I'm glad I could provide helpful pediatric pulmonology information. Remember to always consult healthcare providers for personalized advice. Feel free to ask more questions!"
563
+
564
+ # Help patterns
565
+ help_only = ['help', 'what can you do', 'what are you', 'who are you']
566
+ if query_lower in help_only:
567
+ return """πŸ€– **About BioGPT Pediatric Pulmonology Assistant**
568
+
569
+ I'm an AI medical assistant powered by BioGPT, specialized in pediatric pulmonology and respiratory medicine. I can help with:
570
+
571
+ 🫁 **Pediatric Pulmonology:**
572
+ β€’ Asthma, bronchiolitis, pneumonia, croup
573
+ β€’ Respiratory symptoms and breathing difficulties
574
+ β€’ Treatment guidance and management
575
+ β€’ When to seek medical care
576
+
577
+ ⚠️ **Important:** I provide educational information only. Always consult healthcare professionals for medical decisions."""
578
+
579
+ return None
580
+
581
+ def chat_interface(self, message: str, history: List[List[str]]) -> str:
582
+ """Main chat interface for Gradio"""
583
+ if not message.strip():
584
+ return "Hello! I'm BioGPT, your pediatric pulmonology AI assistant. How can I help you with children's respiratory health today?"
585
+
586
+ print(f"πŸ” Processing query: '{message}'")
587
+
588
+ # Handle conversational interactions
589
+ conversational_response = self.handle_conversational_interactions(message)
590
+ if conversational_response:
591
+ print(" Handled as conversational")
592
+ return conversational_response
593
+
594
+ print(" Processing as medical query")
595
+
596
+ # Process as medical query
597
+ context = self.retrieve_medical_context(message)
598
+
599
+ if not context:
600
+ return f"""🩺 **Medical Query:** {message}
601
+
602
+ ⚠️ I don't have specific information about this topic in my current medical database. However, I recommend:
603
+
604
+ 1. **Consult Healthcare Provider**: For personalized medical advice
605
+ 2. **Emergency Signs**: If symptoms are severe, seek immediate care
606
+ 3. **Pediatric Specialist**: For specialized concerns
607
+
608
+ **For urgent medical concerns, contact your healthcare provider or emergency services.**
609
+
610
+ πŸ’‘ **Try asking about**: asthma, breathing difficulties, cough, pneumonia, or other respiratory symptoms."""
611
+
612
+ # Generate medical response
613
+ main_context = '\n\n'.join(context)
614
+ response = self.generate_biogpt_response(main_context, message)
615
+
616
+ # Format as medical response
617
+ final_response = f"🩺 **BioGPT Medical Assistant:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
618
+
619
+ return final_response
620
+
621
+ def get_knowledge_stats(self) -> Dict:
622
+ """Get statistics about loaded knowledge"""
623
+ if not self.knowledge_chunks:
624
+ return {"total_chunks": 0}
625
+
626
+ stats = {
627
+ "total_chunks": len(self.knowledge_chunks),
628
+ "default_knowledge": len([c for c in self.knowledge_chunks if c.get('source') == 'default_knowledge']),
629
+ "pulmonology_file_data": len([c for c in self.knowledge_chunks if c.get('source') == 'pediatric_pulmonology_file']),
630
+ "pulmonology_focused": len([c for c in self.knowledge_chunks if c.get('medical_focus') == 'pediatric_pulmonology']),
631
+ "model_used": getattr(self, 'model_name', 'Unknown')
632
+ }
633
+ return stats
634
+
635
+ # Test function
636
+ def test_chatbot_responses():
637
+ """Test the chatbot with various queries"""
638
+ print("\nπŸ§ͺ Testing BioGPT Pediatric Pulmonology Chatbot...")
639
+ print("=" * 50)
640
+
641
+ test_queries = [
642
+ "hello",
643
+ "what is asthma in children",
644
+ "my child has breathing difficulties",
645
+ "help",
646
+ "treatment for pediatric pneumonia",
647
+ "thank you"
648
+ ]
649
+
650
+ for query in test_queries:
651
+ print(f"\nπŸ” Query: '{query}'")
652
+ response = chatbot.chat_interface(query, [])
653
+ response_type = 'CONVERSATIONAL' if any(word in response for word in ['Hello!', 'welcome!', 'About BioGPT']) else 'MEDICAL'
654
+ print(f"πŸ€– Response type: {response_type}")
655
+ print(f"πŸ“ Response: {response[:100]}...")
656
+ print("-" * 30)
657
+
658
+ # Initialize the chatbot globally
659
+ print("πŸš€ Initializing BioGPT Pediatric Pulmonology Chatbot...")
660
+ chatbot = BioGPTMedicalChatbot()
661
+
662
+ # Show knowledge statistics
663
+ print("\nπŸ“Š Knowledge Base Statistics:")
664
+ stats = chatbot.get_knowledge_stats()
665
+ for key, value in stats.items():
666
+ print(f" {key}: {value}")
667
+
668
+ # Run tests
669
+ test_chatbot_responses()
670
+
671
+ def create_gradio_interface():
672
+ """Create Gradio chat interface"""
673
+
674
+ # Get current knowledge stats for display
675
+ stats = chatbot.get_knowledge_stats()
676
+
677
+ # Custom CSS for medical theme
678
+ css = """
679
+ .gradio-container {
680
+ background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
681
+ }
682
+ .chat-message {
683
+ background-color: #f8f9fa;
684
+ border-radius: 10px;
685
+ padding: 10px;
686
+ margin: 5px;
687
+ }
688
+ """
689
+
690
+ with gr.Blocks(
691
+ css=css,
692
+ title="BioGPT Pediatric Pulmonology Assistant",
693
+ theme=gr.themes.Soft()
694
+ ) as demo:
695
+
696
+ # Header
697
+ gr.HTML(f"""
698
+ <div style="text-align: center; padding: 20px; background: linear-gradient(90deg, #667eea, #764ba2); color: white; border-radius: 10px; margin-bottom: 20px;">
699
+ <h1>🫁 BioGPT Pediatric Pulmonology Assistant</h1>
700
+ <p>Specialized AI Medical Chatbot for Children's Respiratory Health</p>
701
+ <p><strong>Powered by BioGPT | {stats['total_chunks']} Medical Knowledge Chunks Loaded</strong></p>
702
+ <p><small>Model: {stats['model_used']} | Pulmonology Data: {stats['pulmonology_file_data']} chunks</small></p>
703
+ </div>
704
+ """)
705
+
706
+ # Important disclaimer
707
+ gr.HTML("""
708
+ <div style="background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 15px; margin-bottom: 20px;">
709
+ <h3 style="color: #856404; margin-top: 0;">⚠️ Medical Disclaimer</h3>
710
+ <p style="color: #856404; margin-bottom: 0;">
711
+ This AI provides educational pediatric pulmonology information only and is NOT a substitute for professional medical advice,
712
+ diagnosis, or treatment. Always consult qualified healthcare providers for medical decisions.
713
+ <strong>In case of respiratory emergency, call emergency services immediately.</strong>
714
+ </p>
715
+ </div>
716
+ """)
717
+
718
+ # Chat interface
719
+ chatbot_interface = gr.ChatInterface(
720
+ fn=chatbot.chat_interface,
721
+ title="πŸ’¬ Chat with BioGPT Pulmonology Assistant",
722
+ description="Ask me about pediatric respiratory health, asthma, breathing difficulties, and pulmonology treatments.",
723
+ examples=[
724
+ "What is asthma in children?",
725
+ "My child has a persistent cough, what should I do?",
726
+ "How is bronchiolitis treated in infants?",
727
+ "When should I be worried about my child's breathing?",
728
+ "What are the signs of pneumonia in children?",
729
+ "How can I prevent respiratory infections?"
730
+ ],
731
+ retry_btn=None,
732
+ undo_btn=None,
733
+ clear_btn="πŸ—‘οΈ Clear Chat",
734
+ submit_btn="🫁 Ask BioGPT",
735
+ chatbot=gr.Chatbot(
736
+ height=500,
737
+ placeholder="<div style='text-align: center; color: #666;'>Start a conversation with BioGPT Pediatric Pulmonology Assistant</div>",
738
+ show_copy_button=True,
739
+ bubble_full_width=False
740
+ )
741
+ )
742
+
743
+ # Information tabs
744
+ with gr.Tabs():
745
+ with gr.Tab("ℹ️ About"):
746
+ gr.Markdown(f"""
747
+ ## About BioGPT Pediatric Pulmonology Assistant
748
+
749
+ This AI assistant is powered by **BioGPT**, specialized for pediatric pulmonology and respiratory medicine.
750
+
751
+ ### 🎯 Current Knowledge Base:
752
+ - **Total Chunks**: {stats['total_chunks']}
753
+ - **Default Medical Knowledge**: {stats['default_knowledge']} chunks
754
+ - **Pulmonology File Data**: {stats['pulmonology_file_data']} chunks
755
+ - **Pulmonology Focus**: {stats['pulmonology_focused']} chunks
756
+ - **Model**: {stats['model_used']}
757
+
758
+ ### 🫁 Specializations:
759
+ - **Pediatric Asthma**: Diagnosis, treatment, management
760
+ - **Respiratory Infections**: Pneumonia, bronchiolitis, croup
761
+ - **Breathing Difficulties**: Assessment and guidance
762
+ - **Chronic Respiratory Conditions**: Long-term management
763
+ - **Emergency Respiratory Care**: When to seek immediate help
764
+
765
+ ### πŸ”§ Technical Features:
766
+ - **Model**: Microsoft BioGPT (Medical AI) with fallback systems
767
+ - **Auto-Loading**: Automatically loads your pulmonology data file
768
+ - **Smart Retrieval**: Prioritizes pulmonology content
769
+ - **Rule-Based Fallback**: Ensures reliable responses even if AI model fails
770
+
771
+ ### πŸ“± How to Use:
772
+ 1. Type your pediatric respiratory question
773
+ 2. Be specific about symptoms or conditions
774
+ 3. Ask about treatments, diagnosis, or management
775
+ 4. Request guidance on when to seek care
776
+ """)
777
+
778
+ with gr.Tab("🫁 Pulmonology Topics"):
779
+ gr.Markdown("""
780
+ ## Pediatric Pulmonology Coverage
781
+
782
+ ### πŸ”΄ Common Respiratory Conditions:
783
+ - **Asthma**: Triggers, symptoms, management, action plans
784
+ - **Bronchiolitis**: RSV, treatment, when to hospitalize
785
+ - **Pneumonia**: Bacterial vs viral, antibiotics, recovery
786
+ - **Croup**: Barking cough, stridor, home treatment
787
+ - **Bronchitis**: Acute vs chronic, treatment approaches
788
+
789
+ ### 🟑 Respiratory Symptoms:
790
+ - **Cough**: Persistent, productive, dry, nocturnal
791
+ - **Wheezing**: Causes, assessment, treatment
792
+ - **Shortness of Breath**: Evaluation and management
793
+ - **Chest Pain**: When concerning in children
794
+ - **Stridor**: Upper airway obstruction signs
795
+
796
+ ### 🟒 Diagnostic & Treatment:
797
+ - **Pulmonary Function Tests**: When appropriate
798
+ - **Imaging**: X-rays, CT scans for respiratory issues
799
+ - **Medications**: Bronchodilators, steroids, antibiotics
800
+ - **Oxygen Therapy**: Indications and monitoring
801
+ - **Respiratory Support**: CPAP, ventilation considerations
802
+
803
+ ### πŸ”΅ Prevention & Management:
804
+ - **Trigger Avoidance**: Environmental controls
805
+ - **Vaccination**: Respiratory disease prevention
806
+ - **Exercise Guidelines**: For children with respiratory conditions
807
+ - **School Management**: Asthma action plans, inhaler use
808
+ """)
809
+
810
+ with gr.Tab("⚠️ Emergency & Safety"):
811
+ gr.Markdown("""
812
+ ## Respiratory Emergency Guidance
813
+
814
+ ### 🚨 CALL EMERGENCY SERVICES IMMEDIATELY:
815
+ - **Severe Breathing Difficulty**: Cannot speak in full sentences
816
+ - **Blue Lips or Fingernails**: Cyanosis indicating oxygen deprivation
817
+ - **Severe Wheezing**: With significant distress
818
+ - **Stridor at Rest**: High-pitched breathing sound
819
+ - **Unconsciousness**: Related to breathing problems
820
+ - **Severe Chest Retractions**: Pulling in around ribs/sternum
821
+
822
+ ### πŸ₯ SEEK IMMEDIATE MEDICAL CARE:
823
+ - **Persistent High Fever**: >104Β°F (40Β°C) with respiratory symptoms
824
+ - **Worsening Symptoms**: Despite treatment
825
+ - **Dehydration Signs**: With respiratory illness
826
+ - **Significant Behavior Changes**: Extreme lethargy, irritability
827
+ - **Inhaler Not Helping**: Asthma symptoms not responding
828
+
829
+ ### πŸ“ž CONTACT HEALTHCARE PROVIDER:
830
+ - **New Respiratory Symptoms**: Lasting more than a few days
831
+ - **Chronic Cough**: Persisting beyond 2-3 weeks
832
+ - **Asthma Questions**: About medications or management
833
+ - **Fever with Cough**: Especially if productive
834
+ - **Exercise Limitations**: Due to breathing difficulties
835
+
836
+ ### 🏠 HOME MONITORING:
837
+ - **Respiratory Rate**: Normal ranges by age
838
+ - **Oxygen Saturation**: If pulse oximeter available
839
+ - **Peak Flow**: For children with asthma
840
+ - **Symptom Tracking**: Using asthma diaries or apps
841
+ """)
842
+
843
+ with gr.Tab("πŸ“ Data Information"):
844
+ gr.Markdown(f"""
845
+ ## Knowledge Base Status
846
+
847
+ ### πŸ“Š Current Data Loaded:
848
+ - **Total Medical Chunks**: {stats['total_chunks']}
849
+ - **Default Knowledge**: {stats['default_knowledge']} chunks
850
+ - **Your Pulmonology File**: {stats['pulmonology_file_data']} chunks
851
+ - **Pulmonology Focused**: {stats['pulmonology_focused']} chunks
852
+ - **AI Model**: {stats['model_used']}
853
+
854
+ ### πŸ“ How Your Data Is Used:
855
+ 1. **Auto-Detection**: System automatically looks for 'Pediatric_cleaned.txt'
856
+ 2. **Smart Processing**: Breaks your file into medical chunks
857
+ 3. **Priority Ranking**: Pulmonology content gets highest priority
858
+ 4. **Context Retrieval**: Relevant chunks are used to answer questions
859
+ 5. **Fallback Systems**: Multiple layers ensure reliable responses
860
+
861
+ ### πŸ“‚ Expected File Formats:
862
+ - **Filename**: 'Pediatric_cleaned.txt' (case variations accepted)
863
+ - **Content**: Plain text with medical information
864
+ - **Structure**: Paragraphs, sections, or bullet points
865
+ - **Focus**: Pediatric pulmonology and respiratory medicine
866
+
867
+ ### πŸ”„ Upload Instructions:
868
+ 1. Go to your Hugging Face Space
869
+ 2. Click "Files" tab
870
+ 3. Upload your 'Pediatric_cleaned.txt' file
871
+ 4. Restart the Space to reload data
872
+
873
+ {"βœ… **Status**: Pulmonology data file loaded successfully!" if stats['pulmonology_file_data'] > 0 else "⚠️ **Status**: No pulmonology data file detected. Upload 'Pediatric_cleaned.txt' to enhance responses."}
874
+
875
+ ### πŸ›‘οΈ Reliability Features:
876
+ - **Multiple Model Support**: Tries BioGPT, DialoGPT, GPT-2 in order
877
+ - **Rule-Based Fallback**: If all AI models fail, uses knowledge-based responses
878
+ - **Conservative Generation**: Prevents problematic outputs
879
+ - **Medical Context Priority**: Always uses your medical knowledge first
880
+ """)
881
+
882
+ # Footer
883
+ gr.HTML("""
884
+ <div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #ddd; color: #666;">
885
+ <p>🫁 <strong>BioGPT Pediatric Pulmonology Assistant</strong> | Powered by Microsoft BioGPT</p>
886
+ <p>Specialized in Children's Respiratory Health β€’ Always consult healthcare professionals</p>
887
+ </div>
888
+ """)
889
+
890
+ return demo
891
+
892
+ # Create and launch the interface
893
+ demo = create_gradio_interface()
894
+
895
+ if __name__ == "__main__":
896
+ # Launch the app
897
+ demo.launch(
898
+ server_name="0.0.0.0",
899
+ server_port=7860,
900
+ share=False
901
+ )
902
+