Blaiseboy commited on
Commit
0373060
Β·
verified Β·
1 Parent(s): 42ed209

Upload 2 files

Browse files
Files changed (2) hide show
  1. Pediatric_cleaned.txt +0 -0
  2. app.py +812 -0
Pediatric_cleaned.txt ADDED
The diff for this file is too large to render. See raw diff
 
app.py ADDED
@@ -0,0 +1,812 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import torch
4
+ import warnings
5
+ import numpy as np
6
+ import gradio as gr
7
+ from transformers import (
8
+ AutoTokenizer,
9
+ AutoModelForCausalLM,
10
+ BitsAndBytesConfig
11
+ )
12
+ from sentence_transformers import SentenceTransformer
13
+ from typing import List, Dict, Optional
14
+ import time
15
+ from datetime import datetime
16
+
17
+ # Suppress warnings
18
+ warnings.filterwarnings('ignore')
19
+
20
+ class BioGPTMedicalChatbot:
21
+ def __init__(self):
22
+ """Initialize BioGPT chatbot for Gradio deployment"""
23
+ print("πŸ₯ Initializing BioGPT Pediatric Pulmonology Chatbot...")
24
+
25
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
26
+ self.use_8bit = torch.cuda.is_available()
27
+
28
+ print(f"πŸ–₯️ Using device: {self.device}")
29
+
30
+ # Setup components
31
+ self.setup_embeddings()
32
+ self.setup_biogpt()
33
+
34
+ # Knowledge base and conversation tracking
35
+ self.knowledge_chunks = []
36
+ self.conversation_history = []
37
+
38
+ # Load default medical knowledge first
39
+ self.load_default_medical_knowledge()
40
+
41
+ # Try to load your specific pediatric pulmonology data
42
+ self.load_pediatric_pulmonology_data()
43
+
44
+ print("βœ… BioGPT Pediatric Pulmonology Chatbot ready!")
45
+
46
+ def load_pediatric_pulmonology_data(self):
47
+ """Auto-load pediatric pulmonology data from uploaded file"""
48
+ pulmonology_files = [
49
+ 'Pediatric_cleaned.txt',
50
+ 'pediatric_cleaned.txt',
51
+ 'Pediatric_Cleaned.txt',
52
+ 'pediatric_pulmonology.txt',
53
+ 'pulmonology_data.txt'
54
+ ]
55
+
56
+ for filename in pulmonology_files:
57
+ if os.path.exists(filename):
58
+ print(f"πŸ“– Found pediatric pulmonology data: {filename}")
59
+ try:
60
+ success = self.load_medical_data(filename)
61
+ if success:
62
+ print(f"βœ… Successfully loaded {filename} with pulmonology data!")
63
+ print(f"πŸ“Š Total knowledge chunks: {len(self.knowledge_chunks)}")
64
+ return True
65
+ except Exception as e:
66
+ print(f"⚠️ Failed to load {filename}: {e}")
67
+ continue
68
+
69
+ print("⚠️ No pediatric pulmonology data file found.")
70
+ print(" Expected files: Pediatric_cleaned.txt")
71
+ print(" Using default pediatric knowledge only.")
72
+ print(f"πŸ“Š Current knowledge chunks: {len(self.knowledge_chunks)}")
73
+ return False
74
+
75
+ def load_medical_data(self, file_path: str):
76
+ """Load and process medical data from text file"""
77
+ print(f"πŸ“– Loading medical data from {file_path}...")
78
+
79
+ try:
80
+ with open(file_path, 'r', encoding='utf-8') as f:
81
+ text = f.read()
82
+ print(f"πŸ“„ File loaded: {len(text):,} characters")
83
+ except FileNotFoundError:
84
+ print(f"❌ File {file_path} not found!")
85
+ return False
86
+ except Exception as e:
87
+ print(f"❌ Error reading file: {e}")
88
+ return False
89
+
90
+ # Create chunks optimized for medical content
91
+ print("πŸ“ Creating pediatric pulmonology chunks...")
92
+ new_chunks = self.create_medical_chunks_from_text(text)
93
+ print(f"πŸ“‹ Created {len(new_chunks)} new medical chunks from file")
94
+
95
+ # Add to existing knowledge chunks (don't replace, append)
96
+ starting_id = len(self.knowledge_chunks)
97
+ for i, chunk in enumerate(new_chunks):
98
+ chunk['id'] = starting_id + i
99
+ chunk['source'] = 'pediatric_pulmonology_file'
100
+
101
+ self.knowledge_chunks.extend(new_chunks)
102
+
103
+ print(f"βœ… Medical data loaded successfully!")
104
+ print(f"πŸ“Š Total knowledge chunks: {len(self.knowledge_chunks)}")
105
+ return True
106
+
107
+ def create_medical_chunks_from_text(self, text: str, chunk_size: int = 400) -> List[Dict]:
108
+ """Create medically-optimized text chunks from uploaded file"""
109
+ chunks = []
110
+
111
+ # Split by medical sections first
112
+ medical_sections = self.split_by_medical_sections(text)
113
+
114
+ for section in medical_sections:
115
+ if len(section.split()) > chunk_size:
116
+ # Split large sections by sentences
117
+ sentences = re.split(r'[.!?]+', section)
118
+ current_chunk = ""
119
+
120
+ for sentence in sentences:
121
+ sentence = sentence.strip()
122
+ if not sentence:
123
+ continue
124
+
125
+ if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
126
+ current_chunk += sentence + ". "
127
+ else:
128
+ if current_chunk.strip():
129
+ chunks.append({
130
+ 'text': current_chunk.strip(),
131
+ 'medical_focus': self.identify_medical_focus(current_chunk)
132
+ })
133
+ current_chunk = sentence + ". "
134
+
135
+ if current_chunk.strip():
136
+ chunks.append({
137
+ 'text': current_chunk.strip(),
138
+ 'medical_focus': self.identify_medical_focus(current_chunk)
139
+ })
140
+ else:
141
+ if section.strip():
142
+ chunks.append({
143
+ 'text': section.strip(),
144
+ 'medical_focus': self.identify_medical_focus(section)
145
+ })
146
+
147
+ return chunks
148
+
149
+ def split_by_medical_sections(self, text: str) -> List[str]:
150
+ """Split text by medical sections"""
151
+ # Look for medical section headers
152
+ section_patterns = [
153
+ r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
154
+ r'\n\s*\d+\.\s+', # Numbered sections
155
+ r'\n\n+' # Paragraph breaks
156
+ ]
157
+
158
+ sections = [text]
159
+ for pattern in section_patterns:
160
+ new_sections = []
161
+ for section in sections:
162
+ splits = re.split(pattern, section, flags=re.IGNORECASE)
163
+ new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
164
+ sections = new_sections
165
+
166
+ return sections
167
+
168
+ def identify_medical_focus(self, text: str) -> str:
169
+ """Identify the medical focus of a text chunk with pulmonology emphasis"""
170
+ text_lower = text.lower()
171
+
172
+ # Enhanced medical categories with pulmonology focus
173
+ categories = {
174
+ 'pediatric_pulmonology': [
175
+ 'asthma', 'pneumonia', 'bronchiolitis', 'croup', 'respiratory', 'lung', 'airway',
176
+ 'breathing', 'cough', 'wheeze', 'stridor', 'pneumothorax', 'pleural', 'ventilator',
177
+ 'oxygen', 'respiratory distress', 'bronchitis', 'pulmonary', 'chest', 'inhaler'
178
+ ],
179
+ 'pediatric_symptoms': ['fever', 'rash', 'vomiting', 'diarrhea', 'pain'],
180
+ 'treatments': ['treatment', 'therapy', 'medication', 'antibiotics', 'steroid'],
181
+ 'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs', 'test'],
182
+ 'emergency': ['emergency', 'urgent', 'serious', 'hospital', 'icu'],
183
+ 'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
184
+ }
185
+
186
+ for category, keywords in categories.items():
187
+ if any(keyword in text_lower for keyword in keywords):
188
+ return category
189
+
190
+ return 'general_medical'
191
+
192
+ def setup_embeddings(self):
193
+ """Setup medical embeddings"""
194
+ try:
195
+ print("πŸ”§ Loading embeddings...")
196
+ self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
197
+ self.use_embeddings = True
198
+ print("βœ… Embeddings loaded successfully")
199
+ except Exception as e:
200
+ print(f"⚠️ Embeddings failed: {e}")
201
+ self.embedding_model = None
202
+ self.use_embeddings = False
203
+
204
+ def setup_biogpt(self):
205
+ """Setup BioGPT model with fallback"""
206
+ print("🧠 Loading BioGPT model...")
207
+
208
+ # Try BioGPT first, then fallback to smaller model
209
+ models_to_try = [
210
+ "microsoft/BioGPT-Large",
211
+ "microsoft/BioGPT",
212
+ "microsoft/DialoGPT-medium"
213
+ ]
214
+
215
+ for model_name in models_to_try:
216
+ try:
217
+ print(f" Trying {model_name}...")
218
+
219
+ # Setup quantization for memory efficiency
220
+ quantization_config = None
221
+ if self.use_8bit and "BioGPT" in model_name:
222
+ quantization_config = BitsAndBytesConfig(
223
+ load_in_8bit=True,
224
+ llm_int8_threshold=6.0,
225
+ )
226
+
227
+ # Load tokenizer
228
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
229
+ if self.tokenizer.pad_token is None:
230
+ self.tokenizer.pad_token = self.tokenizer.eos_token
231
+
232
+ # Load model
233
+ self.model = AutoModelForCausalLM.from_pretrained(
234
+ model_name,
235
+ quantization_config=quantization_config,
236
+ torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
237
+ device_map="auto" if self.device == "cuda" and quantization_config else None,
238
+ trust_remote_code=True
239
+ )
240
+
241
+ if self.device == "cuda" and quantization_config is None:
242
+ self.model = self.model.to(self.device)
243
+
244
+ print(f"βœ… Successfully loaded {model_name}!")
245
+ self.model_name = model_name
246
+ return
247
+
248
+ except Exception as e:
249
+ print(f"❌ Failed to load {model_name}: {e}")
250
+ continue
251
+
252
+ # If all models fail
253
+ print("❌ All models failed to load")
254
+ self.model = None
255
+ self.tokenizer = None
256
+ self.model_name = "None"
257
+
258
+ def load_default_medical_knowledge(self):
259
+ """Load comprehensive default medical knowledge base"""
260
+ default_knowledge = [
261
+ {
262
+ 'id': 0,
263
+ 'text': "Fever in children is commonly caused by viral infections (most common), bacterial infections, immunizations, teething in infants, or overdressing. Normal body temperature ranges from 97Β°F to 100.4Β°F (36.1Β°C to 38Β°C). A fever is generally considered when oral temperature exceeds 100.4Β°F (38Β°C). Most fevers are not dangerous and help the body fight infection. Treatment includes rest, fluids, and fever reducers like acetaminophen or ibuprofen for comfort.",
264
+ 'medical_focus': 'pediatric_symptoms',
265
+ 'source': 'default_knowledge'
266
+ },
267
+ {
268
+ 'id': 1,
269
+ 'text': "Dehydration in infants and children can occur rapidly, especially during illness with vomiting or diarrhea. Warning signs include: dry mouth and tongue, decreased urination, lethargy or irritability, sunken eyes, and in infants under 12 months, sunken fontanelle (soft spot). Mild dehydration can be treated with oral rehydration solutions or clear fluids. Severe dehydration requires immediate medical attention.",
270
+ 'medical_focus': 'pediatric_symptoms',
271
+ 'source': 'default_knowledge'
272
+ },
273
+ {
274
+ 'id': 2,
275
+ 'text': "Common cold symptoms in children include runny or stuffy nose, cough, low-grade fever, sneezing, and general fussiness. Most colds are viral and resolve within 7-10 days without specific treatment. Treatment focuses on comfort measures: rest, adequate fluids, humidified air, and saline nasal drops for congestion. Antibiotics are not effective against viral colds.",
276
+ 'medical_focus': 'pediatric_symptoms',
277
+ 'source': 'default_knowledge'
278
+ },
279
+ {
280
+ 'id': 3,
281
+ 'text': "Emergency warning signs in children requiring immediate medical attention include: severe difficulty breathing, persistent high fever over 104Β°F (40Β°C), signs of severe dehydration, persistent vomiting preventing fluid intake, severe headache with neck stiffness, altered consciousness or extreme lethargy, severe abdominal pain, or any concerning change in behavior. When in doubt, seek medical care.",
282
+ 'medical_focus': 'emergency',
283
+ 'source': 'default_knowledge'
284
+ },
285
+ {
286
+ 'id': 4,
287
+ 'text': "Childhood vaccination schedules protect against serious diseases including measles, mumps, rubella, polio, hepatitis B, Haemophilus influenzae, pneumococcal disease, and others. Vaccines are rigorously tested for safety and effectiveness. Side effects are typically mild, such as low-grade fever or soreness at injection site. Following recommended vaccination schedules protects individual children and the community.",
288
+ 'medical_focus': 'prevention',
289
+ 'source': 'default_knowledge'
290
+ },
291
+ {
292
+ 'id': 5,
293
+ 'text': "Persistent cough in children can be caused by viral upper respiratory infections, asthma, allergies, bacterial infections, or irritants. Most coughs from colds resolve within 2-3 weeks. Seek medical evaluation for coughs lasting more than 3 weeks, coughs with blood, difficulty breathing, or coughs severely interfering with sleep. Treatment depends on the underlying cause.",
294
+ 'medical_focus': 'pediatric_symptoms',
295
+ 'source': 'default_knowledge'
296
+ },
297
+ # Adding more default knowledge chunks for comprehensive coverage...
298
+ {
299
+ 'id': 6,
300
+ 'text': "Asthma in children is a chronic respiratory condition affecting the airways, causing them to become inflamed, narrow, and produce excess mucus. Common triggers include viral infections, allergens (dust mites, pollen, pet dander), irritants (smoke, strong odors), cold air, and exercise. Symptoms include wheezing, cough (especially at night), shortness of breath, and chest tightness. Management includes avoiding triggers, using prescribed inhalers, and having an asthma action plan.",
301
+ 'medical_focus': 'pediatric_pulmonology',
302
+ 'source': 'default_knowledge'
303
+ },
304
+ {
305
+ 'id': 7,
306
+ 'text': "Bronchiolitis is a common respiratory infection in infants and young children, typically caused by respiratory syncytial virus (RSV). It affects the small airways (bronchioles) in the lungs, causing inflammation and mucus buildup. Symptoms include runny nose, cough, low-grade fever, and difficulty breathing. Most cases are mild and resolve with supportive care, but severe cases may require hospitalization for oxygen support.",
307
+ 'medical_focus': 'pediatric_pulmonology',
308
+ 'source': 'default_knowledge'
309
+ }
310
+ ]
311
+
312
+ self.knowledge_chunks = default_knowledge
313
+ print(f"πŸ“š Loaded {len(default_knowledge)} default medical knowledge chunks")
314
+
315
+ def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
316
+ """Retrieve relevant medical context using improved keyword search with pulmonology priority"""
317
+ if not self.knowledge_chunks:
318
+ return []
319
+
320
+ query_lower = query.lower()
321
+ query_words = set(query_lower.split())
322
+ chunk_scores = []
323
+
324
+ # Enhanced medical keyword mapping with pulmonology emphasis
325
+ medical_keywords = {
326
+ 'pulmonology': ['asthma', 'pneumonia', 'bronchiolitis', 'croup', 'respiratory', 'lung', 'airway', 'breathing', 'cough', 'wheeze', 'stridor'],
327
+ 'fever': ['fever', 'temperature', 'hot', 'warm', 'burning'],
328
+ 'stomach': ['stomach', 'abdominal', 'belly', 'tummy', 'pain', 'ache'],
329
+ 'rash': ['rash', 'skin', 'red', 'spots', 'bumps', 'itchy'],
330
+ 'vomiting': ['vomit', 'vomiting', 'throw up', 'sick', 'nausea'],
331
+ 'diarrhea': ['diarrhea', 'loose', 'stool', 'bowel', 'poop'],
332
+ 'dehydration': ['dehydration', 'dehydrated', 'fluids', 'water', 'thirsty'],
333
+ 'emergency': ['emergency', 'urgent', 'serious', 'severe', 'hospital', 'doctor']
334
+ }
335
+
336
+ # Expand query with related medical terms
337
+ expanded_query_words = set(query_words)
338
+ for medical_term, synonyms in medical_keywords.items():
339
+ if any(word in query_lower for word in synonyms):
340
+ expanded_query_words.update(synonyms)
341
+
342
+ for chunk_info in self.knowledge_chunks:
343
+ chunk_text = chunk_info['text'].lower()
344
+
345
+ # Calculate relevance score with expanded terms
346
+ word_overlap = sum(1 for word in expanded_query_words if word in chunk_text)
347
+ base_score = word_overlap / len(expanded_query_words) if expanded_query_words else 0
348
+
349
+ # Strong boost for pulmonology content
350
+ medical_boost = 0
351
+ medical_focus = chunk_info.get('medical_focus', '')
352
+ source = chunk_info.get('source', '')
353
+
354
+ if medical_focus == 'pediatric_pulmonology':
355
+ medical_boost = 0.8 # Highest priority for pulmonology
356
+ elif source == 'pediatric_pulmonology_file':
357
+ medical_boost = 0.7 # High priority for your uploaded data
358
+ elif medical_focus == 'emergency':
359
+ medical_boost = 0.4
360
+ elif medical_focus in ['treatments', 'diagnosis']:
361
+ medical_boost = 0.3
362
+ elif medical_focus == 'pediatric_symptoms':
363
+ medical_boost = 0.5
364
+
365
+ final_score = base_score + medical_boost
366
+
367
+ if final_score > 0:
368
+ chunk_scores.append((final_score, chunk_info['text']))
369
+
370
+ # Return top matches - prioritize pulmonology content
371
+ chunk_scores.sort(reverse=True)
372
+ results = [chunk for _, chunk in chunk_scores[:n_results]]
373
+
374
+ # If no good matches, return some default medical chunks
375
+ if not results:
376
+ results = [chunk['text'] for chunk in self.knowledge_chunks[:2]]
377
+
378
+ return results
379
+
380
+ def generate_biogpt_response(self, context: str, query: str) -> str:
381
+ """Generate medical response using BioGPT"""
382
+ if not self.model or not self.tokenizer:
383
+ return "Medical model not available. Please try again later."
384
+
385
+ try:
386
+ # Create medical prompt
387
+ prompt = f"""Medical Context: {context[:800]}
388
+
389
+ Question: {query}
390
+
391
+ Medical Answer:"""
392
+
393
+ # Tokenize input
394
+ inputs = self.tokenizer(
395
+ prompt,
396
+ return_tensors="pt",
397
+ truncation=True,
398
+ max_length=1024
399
+ )
400
+
401
+ # Move inputs to device
402
+ if self.device == "cuda":
403
+ inputs = {k: v.to(self.device) for k, v in inputs.items()}
404
+
405
+ # Generate response
406
+ with torch.no_grad():
407
+ outputs = self.model.generate(
408
+ **inputs,
409
+ max_new_tokens=150,
410
+ do_sample=True,
411
+ temperature=0.7,
412
+ top_p=0.9,
413
+ pad_token_id=self.tokenizer.eos_token_id,
414
+ repetition_penalty=1.1
415
+ )
416
+
417
+ # Decode response
418
+ full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
419
+
420
+ # Extract generated part
421
+ if "Medical Answer:" in full_response:
422
+ generated_response = full_response.split("Medical Answer:")[-1].strip()
423
+ else:
424
+ generated_response = full_response[len(prompt):].strip()
425
+
426
+ return self.clean_medical_response(generated_response)
427
+
428
+ except Exception as e:
429
+ print(f"⚠️ BioGPT generation failed: {e}")
430
+ return self.fallback_response(context, query)
431
+
432
+ def clean_medical_response(self, response: str) -> str:
433
+ """Clean medical response"""
434
+ sentences = re.split(r'[.!?]+', response)
435
+ clean_sentences = []
436
+
437
+ for sentence in sentences:
438
+ sentence = sentence.strip()
439
+ if len(sentence) > 10:
440
+ clean_sentences.append(sentence)
441
+ if len(clean_sentences) >= 3:
442
+ break
443
+
444
+ if clean_sentences:
445
+ cleaned = '. '.join(clean_sentences) + '.'
446
+ else:
447
+ cleaned = response[:200] + '...' if len(response) > 200 else response
448
+
449
+ return cleaned
450
+
451
+ def fallback_response(self, context: str, query: str) -> str:
452
+ """Fallback response when model fails"""
453
+ sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
454
+
455
+ if sentences:
456
+ response = sentences[0] + '.'
457
+ if len(sentences) > 1:
458
+ response += ' ' + sentences[1] + '.'
459
+ else:
460
+ response = context[:300] + '...'
461
+
462
+ return response
463
+
464
+ def handle_conversational_interactions(self, query: str) -> Optional[str]:
465
+ """Handle conversational interactions"""
466
+ query_lower = query.lower().strip()
467
+
468
+ # Greeting patterns
469
+ exact_greetings = [
470
+ 'hello', 'hi', 'hey', 'good morning', 'good afternoon',
471
+ 'good evening', 'how are you', 'how are you doing'
472
+ ]
473
+
474
+ if query_lower in exact_greetings:
475
+ return "πŸ‘‹ Hello! I'm BioGPT, your AI medical assistant specialized in pediatric pulmonology. I provide evidence-based medical information about children's respiratory health. What can I help you with today?"
476
+
477
+ # Thanks patterns
478
+ thanks_only = ['thank you', 'thanks', 'thank you so much', 'thanks a lot']
479
+ if query_lower in thanks_only:
480
+ return "πŸ™ You're welcome! I'm glad I could provide helpful pediatric pulmonology information. Remember to always consult healthcare providers for personalized advice. Feel free to ask more questions!"
481
+
482
+ # Help patterns
483
+ help_only = ['help', 'what can you do', 'what are you', 'who are you']
484
+ if query_lower in help_only:
485
+ return """πŸ€– **About BioGPT Pediatric Pulmonology Assistant**
486
+
487
+ I'm an AI medical assistant powered by BioGPT, specialized in pediatric pulmonology and respiratory medicine. I can help with:
488
+
489
+ 🫁 **Pediatric Pulmonology:**
490
+ β€’ Asthma, bronchiolitis, pneumonia, croup
491
+ β€’ Respiratory symptoms and breathing difficulties
492
+ β€’ Treatment guidance and management
493
+ β€’ When to seek medical care
494
+
495
+ ⚠️ **Important:** I provide educational information only. Always consult healthcare professionals for medical decisions."""
496
+
497
+ return None
498
+
499
+ def chat_interface(self, message: str, history: List[List[str]]) -> str:
500
+ """Main chat interface for Gradio"""
501
+ if not message.strip():
502
+ return "Hello! I'm BioGPT, your pediatric pulmonology AI assistant. How can I help you with children's respiratory health today?"
503
+
504
+ print(f"πŸ” Processing query: '{message}'")
505
+
506
+ # Handle conversational interactions
507
+ conversational_response = self.handle_conversational_interactions(message)
508
+ if conversational_response:
509
+ print(" Handled as conversational")
510
+ return conversational_response
511
+
512
+ print(" Processing as medical query")
513
+
514
+ # Process as medical query
515
+ context = self.retrieve_medical_context(message)
516
+
517
+ if not context:
518
+ return f"""🫁 **Pediatric Pulmonology Query:** {message}
519
+
520
+ ⚠️ I don't have specific information about this topic in my current medical database. However, I recommend:
521
+
522
+ 1. **Consult Healthcare Provider**: For personalized medical advice
523
+ 2. **Emergency Signs**: If symptoms are severe, seek immediate care
524
+ 3. **Pediatric Pulmonologist**: For specialized respiratory concerns
525
+
526
+ **For urgent respiratory concerns, contact your healthcare provider or emergency services.**
527
+
528
+ πŸ’‘ **Try asking about**: asthma, breathing difficulties, cough, pneumonia, or other respiratory symptoms."""
529
+
530
+ # Generate medical response
531
+ main_context = '\n\n'.join(context)
532
+ response = self.generate_biogpt_response(main_context, message)
533
+
534
+ # Format as medical response
535
+ final_response = f"🫁 **Pediatric Pulmonology Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
536
+
537
+ return final_response
538
+
539
+ def get_knowledge_stats(self) -> Dict:
540
+ """Get statistics about loaded knowledge"""
541
+ if not self.knowledge_chunks:
542
+ return {"total_chunks": 0}
543
+
544
+ stats = {
545
+ "total_chunks": len(self.knowledge_chunks),
546
+ "default_knowledge": len([c for c in self.knowledge_chunks if c.get('source') == 'default_knowledge']),
547
+ "pulmonology_file_data": len([c for c in self.knowledge_chunks if c.get('source') == 'pediatric_pulmonology_file']),
548
+ "pulmonology_focused": len([c for c in self.knowledge_chunks if c.get('medical_focus') == 'pediatric_pulmonology']),
549
+ "model_used": getattr(self, 'model_name', 'Unknown')
550
+ }
551
+ return stats
552
+
553
+ # Test function
554
+ def test_chatbot_responses():
555
+ """Test the chatbot with various queries"""
556
+ print("\nπŸ§ͺ Testing BioGPT Pediatric Pulmonology Chatbot...")
557
+ print("=" * 50)
558
+
559
+ test_queries = [
560
+ "hello",
561
+ "what is asthma in children",
562
+ "my child has breathing difficulties",
563
+ "help",
564
+ "treatment for pediatric pneumonia",
565
+ "thank you"
566
+ ]
567
+
568
+ for query in test_queries:
569
+ print(f"\nπŸ” Query: '{query}'")
570
+ response = chatbot.chat_interface(query, [])
571
+ response_type = 'CONVERSATIONAL' if any(word in response for word in ['Hello!', 'welcome!', 'About BioGPT']) else 'MEDICAL'
572
+ print(f"πŸ€– Response type: {response_type}")
573
+ print(f"πŸ“ Response: {response[:100]}...")
574
+ print("-" * 30)
575
+
576
+ # Initialize the chatbot globally
577
+ print("πŸš€ Initializing BioGPT Pediatric Pulmonology Chatbot...")
578
+ chatbot = BioGPTMedicalChatbot()
579
+
580
+ # Show knowledge statistics
581
+ print("\nπŸ“Š Knowledge Base Statistics:")
582
+ stats = chatbot.get_knowledge_stats()
583
+ for key, value in stats.items():
584
+ print(f" {key}: {value}")
585
+
586
+ # Run tests
587
+ test_chatbot_responses()
588
+
589
+ def create_gradio_interface():
590
+ """Create Gradio chat interface"""
591
+
592
+ # Get current knowledge stats for display
593
+ stats = chatbot.get_knowledge_stats()
594
+
595
+ # Custom CSS for medical theme
596
+ css = """
597
+ .gradio-container {
598
+ background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
599
+ }
600
+ .chat-message {
601
+ background-color: #f8f9fa;
602
+ border-radius: 10px;
603
+ padding: 10px;
604
+ margin: 5px;
605
+ }
606
+ """
607
+
608
+ with gr.Blocks(
609
+ css=css,
610
+ title="BioGPT Pediatric Pulmonology Assistant",
611
+ theme=gr.themes.Soft()
612
+ ) as demo:
613
+
614
+ # Header
615
+ gr.HTML(f"""
616
+ <div style="text-align: center; padding: 20px; background: linear-gradient(90deg, #667eea, #764ba2); color: white; border-radius: 10px; margin-bottom: 20px;">
617
+ <h1>🫁 BioGPT Pediatric Pulmonology Assistant</h1>
618
+ <p>Specialized AI Medical Chatbot for Children's Respiratory Health</p>
619
+ <p><strong>Powered by BioGPT | {stats['total_chunks']} Medical Knowledge Chunks Loaded</strong></p>
620
+ <p><small>Model: {stats['model_used']} | Pulmonology Data: {stats['pulmonology_file_data']} chunks</small></p>
621
+ </div>
622
+ """)
623
+
624
+ # Important disclaimer
625
+ gr.HTML("""
626
+ <div style="background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 15px; margin-bottom: 20px;">
627
+ <h3 style="color: #856404; margin-top: 0;">⚠️ Medical Disclaimer</h3>
628
+ <p style="color: #856404; margin-bottom: 0;">
629
+ This AI provides educational pediatric pulmonology information only and is NOT a substitute for professional medical advice,
630
+ diagnosis, or treatment. Always consult qualified healthcare providers for medical decisions.
631
+ <strong>In case of respiratory emergency, call emergency services immediately.</strong>
632
+ </p>
633
+ </div>
634
+ """)
635
+
636
+ # Chat interface
637
+ chatbot_interface = gr.ChatInterface(
638
+ fn=chatbot.chat_interface,
639
+ title="πŸ’¬ Chat with BioGPT Pulmonology Assistant",
640
+ description="Ask me about pediatric respiratory health, asthma, breathing difficulties, and pulmonology treatments.",
641
+ examples=[
642
+ "What is asthma in children?",
643
+ "My child has a persistent cough, what should I do?",
644
+ "How is bronchiolitis treated in infants?",
645
+ "When should I be worried about my child's breathing?",
646
+ "What are the signs of pneumonia in children?",
647
+ "How can I prevent respiratory infections?"
648
+ ],
649
+ retry_btn=None,
650
+ undo_btn=None,
651
+ clear_btn="πŸ—‘οΈ Clear Chat",
652
+ submit_btn="🫁 Ask BioGPT",
653
+ chatbot=gr.Chatbot(
654
+ height=500,
655
+ placeholder="<div style='text-align: center; color: #666;'>Start a conversation with BioGPT Pediatric Pulmonology Assistant</div>",
656
+ show_copy_button=True,
657
+ bubble_full_width=False
658
+ )
659
+ )
660
+
661
+ # Information tabs
662
+ with gr.Tabs():
663
+ with gr.Tab("ℹ️ About"):
664
+ gr.Markdown(f"""
665
+ ## About BioGPT Pediatric Pulmonology Assistant
666
+
667
+ This AI assistant is powered by **BioGPT**, specialized for pediatric pulmonology and respiratory medicine.
668
+
669
+ ### 🎯 Current Knowledge Base:
670
+ - **Total Chunks**: {stats['total_chunks']}
671
+ - **Default Medical Knowledge**: {stats['default_knowledge']} chunks
672
+ - **Pulmonology File Data**: {stats['pulmonology_file_data']} chunks
673
+ - **Pulmonology Focus**: {stats['pulmonology_focused']} chunks
674
+ - **Model**: {stats['model_used']}
675
+
676
+ ### 🫁 Specializations:
677
+ - **Pediatric Asthma**: Diagnosis, treatment, management
678
+ - **Respiratory Infections**: Pneumonia, bronchiolitis, croup
679
+ - **Breathing Difficulties**: Assessment and guidance
680
+ - **Chronic Respiratory Conditions**: Long-term management
681
+ - **Emergency Respiratory Care**: When to seek immediate help
682
+
683
+ ### πŸ”§ Technical Features:
684
+ - **Model**: Microsoft BioGPT (Medical AI)
685
+ - **Auto-Loading**: Automatically loads your pulmonology data file
686
+ - **Smart Retrieval**: Prioritizes pulmonology content
687
+ - **Fallback System**: Ensures reliability across different environments
688
+
689
+ ### πŸ“± How to Use:
690
+ 1. Type your pediatric respiratory question
691
+ 2. Be specific about symptoms or conditions
692
+ 3. Ask about treatments, diagnosis, or management
693
+ 4. Request guidance on when to seek care
694
+ """)
695
+
696
+ with gr.Tab("🫁 Pulmonology Topics"):
697
+ gr.Markdown("""
698
+ ## Pediatric Pulmonology Coverage
699
+
700
+ ### πŸ”΄ Common Respiratory Conditions:
701
+ - **Asthma**: Triggers, symptoms, management, action plans
702
+ - **Bronchiolitis**: RSV, treatment, when to hospitalize
703
+ - **Pneumonia**: Bacterial vs viral, antibiotics, recovery
704
+ - **Croup**: Barking cough, stridor, home treatment
705
+ - **Bronchitis**: Acute vs chronic, treatment approaches
706
+
707
+ ### 🟑 Respiratory Symptoms:
708
+ - **Cough**: Persistent, productive, dry, nocturnal
709
+ - **Wheezing**: Causes, assessment, treatment
710
+ - **Shortness of Breath**: Evaluation and management
711
+ - **Chest Pain**: When concerning in children
712
+ - **Stridor**: Upper airway obstruction signs
713
+
714
+ ### 🟒 Diagnostic & Treatment:
715
+ - **Pulmonary Function Tests**: When appropriate
716
+ - **Imaging**: X-rays, CT scans for respiratory issues
717
+ - **Medications**: Bronchodilators, steroids, antibiotics
718
+ - **Oxygen Therapy**: Indications and monitoring
719
+ - **Respiratory Support**: CPAP, ventilation considerations
720
+
721
+ ### πŸ”΅ Prevention & Management:
722
+ - **Trigger Avoidance**: Environmental controls
723
+ - **Vaccination**: Respiratory disease prevention
724
+ - **Exercise Guidelines**: For children with respiratory conditions
725
+ - **School Management**: Asthma action plans, inhaler use
726
+ """)
727
+
728
+ with gr.Tab("⚠️ Emergency & Safety"):
729
+ gr.Markdown("""
730
+ ## Respiratory Emergency Guidance
731
+
732
+ ### 🚨 CALL EMERGENCY SERVICES IMMEDIATELY:
733
+ - **Severe Breathing Difficulty**: Cannot speak in full sentences
734
+ - **Blue Lips or Fingernails**: Cyanosis indicating oxygen deprivation
735
+ - **Severe Wheezing**: With significant distress
736
+ - **Stridor at Rest**: High-pitched breathing sound
737
+ - **Unconsciousness**: Related to breathing problems
738
+ - **Severe Chest Retractions**: Pulling in around ribs/sternum
739
+
740
+ ### πŸ₯ SEEK IMMEDIATE MEDICAL CARE:
741
+ - **Persistent High Fever**: >104Β°F (40Β°C) with respiratory symptoms
742
+ - **Worsening Symptoms**: Despite treatment
743
+ - **Dehydration Signs**: With respiratory illness
744
+ - **Significant Behavior Changes**: Extreme lethargy, irritability
745
+ - **Inhaler Not Helping**: Asthma symptoms not responding
746
+
747
+ ### πŸ“ž CONTACT HEALTHCARE PROVIDER:
748
+ - **New Respiratory Symptoms**: Lasting more than a few days
749
+ - **Chronic Cough**: Persisting beyond 2-3 weeks
750
+ - **Asthma Questions**: About medications or management
751
+ - **Fever with Cough**: Especially if productive
752
+ - **Exercise Limitations**: Due to breathing difficulties
753
+
754
+ ### 🏠 HOME MONITORING:
755
+ - **Respiratory Rate**: Normal ranges by age
756
+ - **Oxygen Saturation**: If pulse oximeter available
757
+ - **Peak Flow**: For children with asthma
758
+ - **Symptom Tracking**: Using asthma diaries or apps
759
+ """)
760
+
761
+ with gr.Tab("πŸ“ Data Information"):
762
+ gr.Markdown(f"""
763
+ ## Knowledge Base Status
764
+
765
+ ### πŸ“Š Current Data Loaded:
766
+ - **Total Medical Chunks**: {stats['total_chunks']}
767
+ - **Default Knowledge**: {stats['default_knowledge']} chunks
768
+ - **Your Pulmonology File**: {stats['pulmonology_file_data']} chunks
769
+ - **Pulmonology Focused**: {stats['pulmonology_focused']} chunks
770
+ - **AI Model**: {stats['model_used']}
771
+
772
+ ### πŸ“ How Your Data Is Used:
773
+ 1. **Auto-Detection**: System automatically looks for 'Pediatric_cleaned.txt'
774
+ 2. **Smart Processing**: Breaks your file into medical chunks
775
+ 3. **Priority Ranking**: Pulmonology content gets highest priority
776
+ 4. **Context Retrieval**: Relevant chunks are used to answer questions
777
+
778
+ ### πŸ“‚ Expected File Formats:
779
+ - **Filename**: 'Pediatric_cleaned.txt' (case variations accepted)
780
+ - **Content**: Plain text with medical information
781
+ - **Structure**: Paragraphs, sections, or bullet points
782
+ - **Focus**: Pediatric pulmonology and respiratory medicine
783
+
784
+ ### πŸ”„ Upload Instructions:
785
+ 1. Go to your Hugging Face Space
786
+ 2. Click "Files" tab
787
+ 3. Upload your 'Pediatric_cleaned.txt' file
788
+ 4. Restart the Space to reload data
789
+
790
+ {"βœ… **Status**: Pulmonology data file loaded successfully!" if stats['pulmonology_file_data'] > 0 else "⚠️ **Status**: No pulmonology data file detected. Upload 'Pediatric_cleaned.txt' to enhance responses."}
791
+ """)
792
+
793
+ # Footer
794
+ gr.HTML("""
795
+ <div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #ddd; color: #666;">
796
+ <p>🫁 <strong>BioGPT Pediatric Pulmonology Assistant</strong> | Powered by Microsoft BioGPT</p>
797
+ <p>Specialized in Children's Respiratory Health β€’ Always consult healthcare professionals</p>
798
+ </div>
799
+ """)
800
+
801
+ return demo
802
+
803
+ # Create and launch the interface
804
+ demo = create_gradio_interface()
805
+
806
+ if __name__ == "__main__":
807
+ # Launch the app
808
+ demo.launch(
809
+ server_name="0.0.0.0",
810
+ server_port=7860,
811
+ share=False
812
+ )