BioGPT-chatbot / medical_chatbot.py
Blaiseboy's picture
Upload 2 files
79cca78 verified
raw
history blame
24.7 kB
# Setup and Installation
import torch
print("🖥️ System Check:")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU device: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
else:
print("⚠️ No GPU detected - BioGPT will run on CPU")
print("\n🔧 Loading required packages...")
# Import Libraries
import os
import re
import torch
import warnings
import numpy as np
import faiss # FAISS for vector search
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
BitsAndBytesConfig
)
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
import time
from datetime import datetime
import json
import pickle
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
print("📚 Libraries imported successfully!")
print(f"🔍 FAISS version: {faiss.__version__}")
print("🎯 Using FAISS for vector search")
# BioGPT Medical Chatbot Class
class ColabBioGPTChatbot:
def __init__(self, use_gpu=True, use_8bit=True):
"""Initialize BioGPT chatbot optimized for deployment"""
print("🏥 Initializing Professional BioGPT Medical Chatbot...")
# Force CPU for HF Spaces if needed
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
self.use_8bit = use_8bit and torch.cuda.is_available()
print(f"🖥️ Using device: {self.device}")
if self.use_8bit:
print("💾 Using 8-bit quantization for memory efficiency")
# Setup components
self.setup_embeddings()
self.setup_faiss_index()
self.setup_biogpt()
# Conversation tracking
self.conversation_history = []
self.knowledge_chunks = []
print("✅ BioGPT Medical Chatbot ready for professional medical assistance!")
def setup_embeddings(self):
"""Setup medical-optimized embeddings"""
print("🔧 Loading medical embeddings...")
try:
# Use a smaller, more efficient model for deployment
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
print(f"✅ Embeddings loaded (dimension: {self.embedding_dim})")
self.use_embeddings = True
except Exception as e:
print(f"⚠️ Embeddings failed: {e}")
self.embedding_model = None
self.embedding_dim = 384
self.use_embeddings = False
def setup_faiss_index(self):
"""Setup faiss for CPU-based vector search"""
print("🔧 Setting up FAISS vector database...")
try:
print('Using CPU FAISS index for maximum compatibility')
self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
self.use_gpu_faiss = False
self.faiss_ready = True
self.collection = self.faiss_index
print("✅ FAISS CPU index initialized successfully")
except Exception as e:
print(f"❌ FAISS setup failed: {e}")
self.faiss_index = None
self.faiss_ready = False
self.collection = None
def setup_biogpt(self):
"""Setup BioGPT model with optimizations for deployment"""
print("🧠 Loading BioGPT model...")
# Try BioGPT first, fallback to smaller models if needed
model_options = [
"microsoft/BioGPT-Large",
"microsoft/BioGPT", # Smaller version
"microsoft/DialoGPT-medium", # Fallback
"gpt2" # Final fallback
]
for model_name in model_options:
try:
print(f" Attempting to load: {model_name}")
# Setup quantization config for memory efficiency
if self.use_8bit and "BioGPT" in model_name:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# Set padding token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model with proper settings for deployment
start_time = time.time()
model_kwargs = {
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
"trust_remote_code": True,
"low_cpu_mem_usage": True, # Important for deployment
}
if quantization_config:
model_kwargs["quantization_config"] = quantization_config
model_kwargs["device_map"] = "auto"
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
**model_kwargs
)
# Move to device if not using device_map
if self.device == "cuda" and quantization_config is None:
self.model = self.model.to(self.device)
load_time = time.time() - start_time
print(f"✅ {model_name} loaded successfully! ({load_time:.1f} seconds)")
# Test the model
self.test_model()
break # Success, exit the loop
except Exception as e:
print(f"❌ {model_name} loading failed: {e}")
if model_name == model_options[-1]: # Last option failed
print("❌ All models failed to load")
self.model = None
self.tokenizer = None
continue
def test_model(self):
"""Test the loaded model with a simple query"""
print("🧪 Testing model...")
try:
test_prompt = "Fever in children can be caused by"
inputs = self.tokenizer(test_prompt, return_tensors="pt")
if self.device == "cuda":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=20,
do_sample=True,
temperature=0.7,
pad_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"✅ Model test successful!")
print(f" Test response: {response}")
except Exception as e:
print(f"⚠️ Model test failed: {e}")
def load_medical_data(self, file_path: str):
"""Load and process medical data with progress tracking"""
print(f"📖 Loading medical data from {file_path}...")
try:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
print(f"📄 File loaded: {len(text):,} characters")
except FileNotFoundError:
print(f"❌ File {file_path} not found!")
return False
except Exception as e:
print(f"❌ Error loading file: {e}")
return False
# Create chunks optimized for medical content
print("📝 Creating medical-optimized chunks...")
chunks = self.create_medical_chunks(text)
print(f"📋 Created {len(chunks)} medical chunks")
self.knowledge_chunks = chunks
# Generate embeddings with progress and add to FAISS index
if self.use_embeddings and self.embedding_model and self.faiss_ready:
return self.generate_embeddings_with_progress(chunks)
print("✅ Medical data loaded (text search mode)")
return True
def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
"""Create medically-optimized text chunks"""
chunks = []
# Split by medical sections first
medical_sections = self.split_by_medical_sections(text)
chunk_id = 0
for section in medical_sections:
if len(section.split()) > chunk_size:
# Split large sections by sentences
sentences = re.split(r'[.!?]+', section)
current_chunk = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
current_chunk += sentence + ". "
else:
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
current_chunk = sentence + ". "
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
else:
chunks.append({
'id': chunk_id,
'text': section,
'medical_focus': self.identify_medical_focus(section)
})
chunk_id += 1
return chunks
def split_by_medical_sections(self, text: str) -> List[str]:
"""Split text by medical sections"""
# Look for medical section headers
section_patterns = [
r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
r'\n\s*\d+\.\s+', # Numbered sections
r'\n\n+' # Paragraph breaks
]
sections = [text]
for pattern in section_patterns:
new_sections = []
for section in sections:
splits = re.split(pattern, section, flags=re.IGNORECASE)
new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
sections = new_sections
return sections
def identify_medical_focus(self, text: str) -> str:
"""Identify the medical focus of a text chunk"""
text_lower = text.lower()
# Medical categories
categories = {
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
}
for category, keywords in categories.items():
if any(keyword in text_lower for keyword in keywords):
return category
return 'general_medical'
def generate_embeddings_with_progress(self, chunks: List[Dict]) -> bool:
"""Generate embeddings with progress tracking and add to FAISS index"""
print("🔮 Generating medical embeddings and adding to FAISS index...")
if not self.embedding_model or not self.faiss_index:
print("❌ Embedding model or FAISS index not available.")
return False
try:
texts = [chunk['text'] for chunk in chunks]
# Generate embeddings in batches with progress
batch_size = 32
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i+batch_size]
batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
all_embeddings.extend(batch_embeddings)
# Show progress
progress = min(i + batch_size, len(texts))
print(f" Progress: {progress}/{len(texts)} chunks processed", end='\r')
print(f"\n ✅ Generated embeddings for {len(texts)} chunks")
# Add embeddings to FAISS index
print("💾 Adding embeddings to FAISS index...")
self.faiss_index.add(np.array(all_embeddings))
print("✅ Medical embeddings added to FAISS index successfully!")
return True
except Exception as e:
print(f"❌ Embedding generation or FAISS add failed: {e}")
return False
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
"""Retrieve relevant medical context using embeddings or keyword search"""
if self.use_embeddings and self.embedding_model and self.faiss_ready:
try:
# Generate query embedding
query_embedding = self.embedding_model.encode([query])
# Search for similar content in FAISS index
distances, indices = self.faiss_index.search(np.array(query_embedding), n_results)
# Retrieve the corresponding chunks
context_chunks = [self.knowledge_chunks[i]['text'] for i in indices[0] if i != -1]
if context_chunks:
return context_chunks
except Exception as e:
print(f"⚠️ Embedding search failed: {e}")
# Fallback to keyword search
print("⚠️ Falling back to keyword search.")
return self.keyword_search_medical(query, n_results)
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
"""Medical-focused keyword search"""
if not self.knowledge_chunks:
return []
query_words = set(query.lower().split())
chunk_scores = []
for chunk_info in self.knowledge_chunks:
chunk_text = chunk_info['text']
chunk_words = set(chunk_text.lower().split())
# Calculate relevance score
word_overlap = len(query_words.intersection(chunk_words))
base_score = word_overlap / len(query_words) if query_words else 0
# Boost medical content
medical_boost = 0
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
medical_boost = 0.5
final_score = base_score + medical_boost
if final_score > 0:
chunk_scores.append((final_score, chunk_text))
# Return top matches
chunk_scores.sort(reverse=True)
return [chunk for _, chunk in chunk_scores[:n_results]]
def generate_biogpt_response(self, context: str, query: str) -> str:
"""Generate medical response using BioGPT only"""
if not self.model or not self.tokenizer:
return "⚠️ Medical AI model not available. This chatbot requires BioGPT for accurate medical information. Please check the setup or try restarting."
try:
# Create medical-focused prompt
prompt = f"""Medical Context: {context[:800]}
Question: {query}
Medical Answer:"""
# Tokenize input
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=1024
)
# Move inputs to the correct device
if self.device == "cuda":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.1
)
# Decode response
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the generated part
if "Medical Answer:" in full_response:
generated_response = full_response.split("Medical Answer:")[-1].strip()
else:
generated_response = full_response[len(prompt):].strip()
# Clean up response
cleaned_response = self.clean_medical_response(generated_response)
return cleaned_response
except Exception as e:
print(f"⚠️ BioGPT generation failed: {e}")
return "⚠️ Unable to generate medical response. The medical AI model encountered an error. Please try rephrasing your question or contact support."
def clean_medical_response(self, response: str) -> str:
"""Clean and format medical response"""
# Remove incomplete sentences and limit length
sentences = re.split(r'[.!?]+', response)
clean_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
clean_sentences.append(sentence)
if len(clean_sentences) >= 3: # Limit to 3 sentences
break
if clean_sentences:
cleaned = '. '.join(clean_sentences) + '.'
else:
cleaned = response[:200] + '...' if len(response) > 200 else response
return cleaned
def fallback_response(self, context: str, query: str) -> str:
"""Fallback response when BioGPT fails"""
# Extract key sentences from context
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
if sentences:
response = sentences[0] + '.'
if len(sentences) > 1:
response += ' ' + sentences[1] + '.'
else:
response = context[:300] + '...'
return response
def handle_conversational_interactions(self, query: str) -> Optional[str]:
"""Handle comprehensive conversational interactions"""
query_lower = query.lower().strip()
# Use more specific patterns for greetings
greeting_patterns = [
r'^\s*(hello|hi|hey|hiya|howdy)\s*$',
r'^\s*(good morning|good afternoon|good evening|good day)\s*$',
r'^\s*(what\'s up|whats up|sup|yo)\s*$',
r'^\s*(greetings|salutations)\s*$',
r'^\s*(how are you|how are you doing|how\'s it going|hows it going)\s*$',
r'^\s*(good to meet you|nice to meet you|pleased to meet you)\s*$'
]
for pattern in greeting_patterns:
if re.match(pattern, query_lower):
responses = [
"👋 Hello! I'm BioGPT, your professional medical AI assistant specialized in pediatric medicine. I'm here to provide evidence-based medical information. What health concern can I help you with today?",
"🏥 Hi there! I'm a medical AI assistant powered by BioGPT, trained on medical literature. I can help answer questions about children's health and medical conditions. How can I assist you?",
"👋 Greetings! I'm your AI medical consultant, ready to help with pediatric health questions using the latest medical knowledge. What would you like to know about?"
]
return np.random.choice(responses)
# Handle thanks and other conversational patterns...
# (keeping the rest of the conversational handling as before)
# Return None if no conversational pattern matches
return None
def chat(self, query: str) -> str:
"""Main chat function with BioGPT medical-only responses"""
if not query.strip():
return "Hello! I'm BioGPT, your professional medical AI assistant. How can I help you with pediatric medical questions today?"
# Handle comprehensive conversational interactions first
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
# Add to conversation history
self.conversation_history.append({
'query': query,
'response': conversational_response,
'timestamp': datetime.now().isoformat(),
'type': 'conversational'
})
return conversational_response
# Check if medical model is available
if not self.model or not self.tokenizer:
return "⚠️ **Medical AI Unavailable**: This chatbot requires BioGPT for accurate medical information. The medical model failed to load. Please contact support or try restarting the application."
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
print(f"🔍 Processing medical query: {query}")
# Retrieve relevant medical context using FAISS or keyword search
start_time = time.time()
context = self.retrieve_medical_context(query)
retrieval_time = time.time() - start_time
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
print(f" 📚 Context retrieved ({retrieval_time:.2f}s)")
# Generate response with BioGPT
start_time = time.time()
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
generation_time = time.time() - start_time
print(f" 🧠 Response generated ({generation_time:.2f}s)")
# Format final response
final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
# Add to conversation history
self.conversation_history.append({
'query': query,
'response': final_response,
'timestamp': datetime.now().isoformat(),
'retrieval_time': retrieval_time,
'generation_time': generation_time,
'type': 'medical'
})
return final_response
def get_conversation_summary(self) -> Dict:
"""Get conversation statistics"""
if not self.conversation_history:
return {"message": "No conversations yet"}
# Filter medical conversations for performance stats
medical_conversations = [h for h in self.conversation_history if h.get('type') == 'medical']
if not medical_conversations:
return {
"total_conversations": len(self.conversation_history),
"medical_conversations": 0,
"conversational_interactions": len(self.conversation_history),
"model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model",
"vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search",
"device": self.device
}
avg_retrieval_time = sum(h.get('retrieval_time', 0) for h in medical_conversations) / len(medical_conversations)
avg_generation_time = sum(h.get('generation_time', 0) for h in medical_conversations) / len(medical_conversations)
return {
"total_conversations": len(self.conversation_history),
"medical_conversations": len(medical_conversations),
"conversational_interactions": len(self.conversation_history) - len(medical_conversations),
"avg_retrieval_time": f"{avg_retrieval_time:.2f}s",
"avg_generation_time": f"{avg_generation_time:.2f}s",
"model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model",
"vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search",
"device": self.device,
"quantization": "8-bit" if self.use_8bit else "16-bit/32-bit"
}