File size: 18,030 Bytes
f1ca076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import os
import re
import torch
import warnings
import numpy as np
import faiss
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
import time
from datetime import datetime

# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')

class ColabBioGPTChatbot:
    def __init__(self, use_gpu=True, use_8bit=True):
        """Initialize BioGPT chatbot optimized for Hugging Face Spaces"""
        print("๐Ÿฅ Initializing Medical Chatbot...")
        self.use_gpu = use_gpu
        self.use_8bit = use_8bit
        self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
        print(f"๐Ÿ–ฅ๏ธ Using device: {self.device}")
        
        self.tokenizer = None
        self.model = None
        self.knowledge_chunks = []
        self.conversation_history = []
        self.embedding_model = None
        self.faiss_index = None
        self.faiss_ready = False
        self.use_embeddings = True
        
        # Initialize components
        self.setup_biogpt()
        self.load_sentence_transformer()
        
    def setup_biogpt(self):
        """Setup BioGPT model with fallback to base BioGPT if Large fails"""
        print("๐Ÿง  Loading BioGPT model...")
        
        try:
            # Try BioGPT-Large first
            model_name = "microsoft/BioGPT-Large"
            print(f"Attempting to load {model_name}...")
            
            if self.use_8bit and self.device == "cuda":
                quantization_config = BitsAndBytesConfig(
                    load_in_8bit=True,
                    llm_int8_threshold=6.0,
                    llm_int8_has_fp16_weight=False,
                )
            else:
                quantization_config = None
            
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
                
            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                quantization_config=quantization_config,
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                device_map="auto" if self.device == "cuda" else None,
                trust_remote_code=True,
                low_cpu_mem_usage=True
            )
            
            if self.device == "cuda" and quantization_config is None:
                self.model = self.model.to(self.device)
                
            print("โœ… BioGPT-Large loaded successfully!")
            
        except Exception as e:
            print(f"โŒ BioGPT-Large loading failed: {e}")
            print("๐Ÿ” Falling back to base BioGPT...")
            self.setup_fallback_biogpt()
    
    def setup_fallback_biogpt(self):
        """Fallback to microsoft/BioGPT if BioGPT-Large fails"""
        try:
            model_name = "microsoft/BioGPT"
            print(f"Loading fallback model: {model_name}")
            
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            if self.tokenizer.pad_token is None:
                self.tokenizer.pad_token = self.tokenizer.eos_token
                
            self.model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype=torch.float32,
                trust_remote_code=True,
                low_cpu_mem_usage=True
            )
            
            if self.device == "cuda":
                self.model = self.model.to(self.device)
                
            print("โœ… Base BioGPT model loaded successfully!")
            
        except Exception as e:
            print(f"โŒ Failed to load fallback BioGPT: {e}")
            self.model = None
            self.tokenizer = None
    
    def load_sentence_transformer(self):
        """Load sentence transformer for embeddings"""
        try:
            print("๐Ÿ”ฎ Loading sentence transformer...")
            self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
            
            # Initialize FAISS index (will be populated when data is loaded)
            embedding_dim = 384  # Dimension for all-MiniLM-L6-v2
            self.faiss_index = faiss.IndexFlatL2(embedding_dim)
            self.faiss_ready = True
            print("โœ… Sentence transformer and FAISS index ready!")
            
        except Exception as e:
            print(f"โŒ Failed to load sentence transformer: {e}")
            self.use_embeddings = False
            self.faiss_ready = False

    def load_medical_data(self, file_path):
        """Load and process medical data"""
        print(f"๐Ÿ“– Loading medical data from {file_path}...")
        
        try:
            if not os.path.exists(file_path):
                raise FileNotFoundError(f"File {file_path} not found")
                
            with open(file_path, 'r', encoding='utf-8') as f:
                text = f.read()
            print(f"๐Ÿ“„ File loaded: {len(text):,} characters")
            
        except Exception as e:
            print(f"โŒ Error loading file: {e}")
            raise ValueError(f"Failed to load medical data: {e}")
        
        # Create chunks
        print("๐Ÿ“ Creating medical chunks...")
        chunks = self.create_medical_chunks(text)
        print(f"๐Ÿ“‹ Created {len(chunks)} medical chunks")
        
        self.knowledge_chunks = chunks
        
        # Generate embeddings if available
        if self.use_embeddings and self.embedding_model and self.faiss_ready:
            try:
                self.generate_embeddings_with_progress(chunks)
                print("โœ… Medical data loaded with embeddings!")
            except Exception as e:
                print(f"โš ๏ธ Embedding generation failed: {e}")
                print("โœ… Medical data loaded (keyword search mode)")
        else:
            print("โœ… Medical data loaded (keyword search mode)")
    
    def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
        """Create medically-optimized text chunks"""
        chunks = []
        
        # Split by paragraphs first
        paragraphs = [p.strip() for p in text.split('\n\n') if len(p.strip()) > 50]
        
        chunk_id = 0
        for paragraph in paragraphs:
            if len(paragraph.split()) <= chunk_size:
                chunks.append({
                    'id': chunk_id,
                    'text': paragraph,
                    'medical_focus': self.identify_medical_focus(paragraph)
                })
                chunk_id += 1
            else:
                # Split large paragraphs by sentences
                sentences = re.split(r'[.!?]+', paragraph)
                current_chunk = ""
                
                for sentence in sentences:
                    sentence = sentence.strip()
                    if not sentence:
                        continue
                    
                    if len(current_chunk.split()) + len(sentence.split()) <= chunk_size:
                        current_chunk += sentence + ". "
                    else:
                        if current_chunk.strip():
                            chunks.append({
                                'id': chunk_id,
                                'text': current_chunk.strip(),
                                'medical_focus': self.identify_medical_focus(current_chunk)
                            })
                            chunk_id += 1
                        current_chunk = sentence + ". "
                
                if current_chunk.strip():
                    chunks.append({
                        'id': chunk_id,
                        'text': current_chunk.strip(),
                        'medical_focus': self.identify_medical_focus(current_chunk)
                    })
                    chunk_id += 1
        
        return chunks
    
    def identify_medical_focus(self, text: str) -> str:
        """Identify the medical focus of a text chunk"""
        text_lower = text.lower()
        
        categories = {
            'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
            'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
            'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
            'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
            'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
        }
        
        for category, keywords in categories.items():
            if any(keyword in text_lower for keyword in keywords):
                return category
        
        return 'general_medical'
    
    def generate_embeddings_with_progress(self, chunks: List[Dict]):
        """Generate embeddings and add to FAISS index"""
        print("๐Ÿ”ฎ Generating embeddings...")
        
        try:
            texts = [chunk['text'] for chunk in chunks]
            
            # Generate embeddings in batches
            batch_size = 32
            all_embeddings = []
            
            for i in range(0, len(texts), batch_size):
                batch_texts = texts[i:i+batch_size]
                batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
                all_embeddings.extend(batch_embeddings)
                
                progress = min(i + batch_size, len(texts))
                print(f"   Progress: {progress}/{len(texts)} chunks processed", end='\r')
            
            print(f"\n   โœ… Generated embeddings for {len(texts)} chunks")
            
            # Add to FAISS index
            embeddings_array = np.array(all_embeddings).astype('float32')
            self.faiss_index.add(embeddings_array)
            print("โœ… Embeddings added to FAISS index!")
            
        except Exception as e:
            print(f"โŒ Embedding generation failed: {e}")
            raise
    
    def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
        """Retrieve relevant medical context"""
        if self.use_embeddings and self.embedding_model and self.faiss_ready and self.faiss_index.ntotal > 0:
            try:
                # Generate query embedding
                query_embedding = self.embedding_model.encode([query])
                
                # Search FAISS index
                distances, indices = self.faiss_index.search(
                    np.array(query_embedding).astype('float32'), 
                    min(n_results, self.faiss_index.ntotal)
                )
                
                # Get relevant chunks
                context_chunks = []
                for idx in indices[0]:
                    if idx != -1 and idx < len(self.knowledge_chunks):
                        context_chunks.append(self.knowledge_chunks[idx]['text'])
                
                if context_chunks:
                    return context_chunks
                    
            except Exception as e:
                print(f"โš ๏ธ Embedding search failed: {e}")
        
        # Fallback to keyword search
        return self.keyword_search_medical(query, n_results)
    
    def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
        """Medical-focused keyword search"""
        if not self.knowledge_chunks:
            return []
        
        query_words = set(query.lower().split())
        chunk_scores = []
        
        for chunk_info in self.knowledge_chunks:
            chunk_text = chunk_info['text']
            chunk_words = set(chunk_text.lower().split())
            
            # Calculate relevance score
            word_overlap = len(query_words.intersection(chunk_words))
            base_score = word_overlap / len(query_words) if query_words else 0
            
            # Boost medical content
            medical_boost = 0
            if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
                medical_boost = 0.3
            
            final_score = base_score + medical_boost
            
            if final_score > 0:
                chunk_scores.append((final_score, chunk_text))
        
        # Return top matches
        chunk_scores.sort(reverse=True)
        return [chunk for _, chunk in chunk_scores[:n_results]]
    
    def generate_biogpt_response(self, context: str, query: str) -> str:
        """Generate medical response using BioGPT"""
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup."
        
        try:
            # Create medical prompt
            prompt = f"""Medical Context: {context[:800]}

Question: {query}

Medical Answer:"""
            
            # Tokenize
            inputs = self.tokenizer(
                prompt,
                return_tensors="pt",
                truncation=True,
                max_length=1024
            )
            
            # Move to device
            if self.device == "cuda":
                inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            # Generate response
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=150,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9,
                    pad_token_id=self.tokenizer.eos_token_id,
                    repetition_penalty=1.1
                )
            
            # Decode response
            full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
            
            # Extract generated part
            if "Medical Answer:" in full_response:
                generated_response = full_response.split("Medical Answer:")[-1].strip()
            else:
                generated_response = full_response[len(prompt):].strip()
            
            return self.clean_medical_response(generated_response)
            
        except Exception as e:
            print(f"โš ๏ธ BioGPT generation failed: {e}")
            return self.fallback_response(context, query)
    
    def clean_medical_response(self, response: str) -> str:
        """Clean and format medical response"""
        # Remove incomplete sentences and limit length
        sentences = re.split(r'[.!?]+', response)
        clean_sentences = []
        
        for sentence in sentences:
            sentence = sentence.strip()
            if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
                clean_sentences.append(sentence)
            if len(clean_sentences) >= 3:
                break
        
        if clean_sentences:
            cleaned = '. '.join(clean_sentences) + '.'
        else:
            cleaned = response[:200] + '...' if len(response) > 200 else response
        
        return cleaned
    
    def fallback_response(self, context: str, query: str) -> str:
        """Fallback response when BioGPT fails"""
        sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
        
        if sentences:
            response = sentences[0] + '.'
            if len(sentences) > 1:
                response += ' ' + sentences[1] + '.'
        else:
            response = context[:300] + '...'
        
        return response
    
    def handle_conversational_interactions(self, query: str) -> Optional[str]:
        """Handle conversational interactions"""
        query_lower = query.lower().strip()
        
        # Greetings
        if any(greeting in query_lower for greeting in ['hello', 'hi', 'hey', 'good morning', 'good afternoon']):
            return "๐Ÿ‘‹ Hello! I'm your pediatric medical AI assistant. How can I help you with medical questions today?"
        
        # Thanks
        if any(thanks in query_lower for thanks in ['thank you', 'thanks', 'thx']):
            return "๐Ÿ™ You're welcome! I'm glad I could help. Remember to consult healthcare professionals for medical decisions. What else can I help you with?"
        
        # Goodbyes
        if any(bye in query_lower for bye in ['bye', 'goodbye', 'see you later']):
            return "๐Ÿ‘‹ Goodbye! Take care and remember to consult healthcare professionals for any medical concerns. Stay healthy!"
        
        return None
    
    def chat(self, query: str) -> str:
        """Main chat function"""
        if not query.strip():
            return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
        
        # Handle conversational interactions
        conversational_response = self.handle_conversational_interactions(query)
        if conversational_response:
            return conversational_response
        
        if not self.knowledge_chunks:
            return "Please load medical data first to access the medical knowledge base."
        
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please check the setup and try again."
        
        # Retrieve context
        context = self.retrieve_medical_context(query)
        
        if not context:
            return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
        
        # Generate response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, query)
        
        # Format final response
        final_response = f"๐Ÿฉบ **Medical Information:** {response}\n\nโš ๏ธ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
        
        return final_response