Spaces:
Sleeping
Sleeping
File size: 18,030 Bytes
f1ca076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import os
import re
import torch
import warnings
import numpy as np
import faiss
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig
)
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
import time
from datetime import datetime
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
class ColabBioGPTChatbot:
def __init__(self, use_gpu=True, use_8bit=True):
"""Initialize BioGPT chatbot optimized for Hugging Face Spaces"""
print("๐ฅ Initializing Medical Chatbot...")
self.use_gpu = use_gpu
self.use_8bit = use_8bit
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
print(f"๐ฅ๏ธ Using device: {self.device}")
self.tokenizer = None
self.model = None
self.knowledge_chunks = []
self.conversation_history = []
self.embedding_model = None
self.faiss_index = None
self.faiss_ready = False
self.use_embeddings = True
# Initialize components
self.setup_biogpt()
self.load_sentence_transformer()
def setup_biogpt(self):
"""Setup BioGPT model with fallback to base BioGPT if Large fails"""
print("๐ง Loading BioGPT model...")
try:
# Try BioGPT-Large first
model_name = "microsoft/BioGPT-Large"
print(f"Attempting to load {model_name}...")
if self.use_8bit and self.device == "cuda":
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=quantization_config,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
device_map="auto" if self.device == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
if self.device == "cuda" and quantization_config is None:
self.model = self.model.to(self.device)
print("โ
BioGPT-Large loaded successfully!")
except Exception as e:
print(f"โ BioGPT-Large loading failed: {e}")
print("๐ Falling back to base BioGPT...")
self.setup_fallback_biogpt()
def setup_fallback_biogpt(self):
"""Fallback to microsoft/BioGPT if BioGPT-Large fails"""
try:
model_name = "microsoft/BioGPT"
print(f"Loading fallback model: {model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
if self.device == "cuda":
self.model = self.model.to(self.device)
print("โ
Base BioGPT model loaded successfully!")
except Exception as e:
print(f"โ Failed to load fallback BioGPT: {e}")
self.model = None
self.tokenizer = None
def load_sentence_transformer(self):
"""Load sentence transformer for embeddings"""
try:
print("๐ฎ Loading sentence transformer...")
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Initialize FAISS index (will be populated when data is loaded)
embedding_dim = 384 # Dimension for all-MiniLM-L6-v2
self.faiss_index = faiss.IndexFlatL2(embedding_dim)
self.faiss_ready = True
print("โ
Sentence transformer and FAISS index ready!")
except Exception as e:
print(f"โ Failed to load sentence transformer: {e}")
self.use_embeddings = False
self.faiss_ready = False
def load_medical_data(self, file_path):
"""Load and process medical data"""
print(f"๐ Loading medical data from {file_path}...")
try:
if not os.path.exists(file_path):
raise FileNotFoundError(f"File {file_path} not found")
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
print(f"๐ File loaded: {len(text):,} characters")
except Exception as e:
print(f"โ Error loading file: {e}")
raise ValueError(f"Failed to load medical data: {e}")
# Create chunks
print("๐ Creating medical chunks...")
chunks = self.create_medical_chunks(text)
print(f"๐ Created {len(chunks)} medical chunks")
self.knowledge_chunks = chunks
# Generate embeddings if available
if self.use_embeddings and self.embedding_model and self.faiss_ready:
try:
self.generate_embeddings_with_progress(chunks)
print("โ
Medical data loaded with embeddings!")
except Exception as e:
print(f"โ ๏ธ Embedding generation failed: {e}")
print("โ
Medical data loaded (keyword search mode)")
else:
print("โ
Medical data loaded (keyword search mode)")
def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
"""Create medically-optimized text chunks"""
chunks = []
# Split by paragraphs first
paragraphs = [p.strip() for p in text.split('\n\n') if len(p.strip()) > 50]
chunk_id = 0
for paragraph in paragraphs:
if len(paragraph.split()) <= chunk_size:
chunks.append({
'id': chunk_id,
'text': paragraph,
'medical_focus': self.identify_medical_focus(paragraph)
})
chunk_id += 1
else:
# Split large paragraphs by sentences
sentences = re.split(r'[.!?]+', paragraph)
current_chunk = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
if len(current_chunk.split()) + len(sentence.split()) <= chunk_size:
current_chunk += sentence + ". "
else:
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
current_chunk = sentence + ". "
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
return chunks
def identify_medical_focus(self, text: str) -> str:
"""Identify the medical focus of a text chunk"""
text_lower = text.lower()
categories = {
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
}
for category, keywords in categories.items():
if any(keyword in text_lower for keyword in keywords):
return category
return 'general_medical'
def generate_embeddings_with_progress(self, chunks: List[Dict]):
"""Generate embeddings and add to FAISS index"""
print("๐ฎ Generating embeddings...")
try:
texts = [chunk['text'] for chunk in chunks]
# Generate embeddings in batches
batch_size = 32
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i+batch_size]
batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
all_embeddings.extend(batch_embeddings)
progress = min(i + batch_size, len(texts))
print(f" Progress: {progress}/{len(texts)} chunks processed", end='\r')
print(f"\n โ
Generated embeddings for {len(texts)} chunks")
# Add to FAISS index
embeddings_array = np.array(all_embeddings).astype('float32')
self.faiss_index.add(embeddings_array)
print("โ
Embeddings added to FAISS index!")
except Exception as e:
print(f"โ Embedding generation failed: {e}")
raise
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
"""Retrieve relevant medical context"""
if self.use_embeddings and self.embedding_model and self.faiss_ready and self.faiss_index.ntotal > 0:
try:
# Generate query embedding
query_embedding = self.embedding_model.encode([query])
# Search FAISS index
distances, indices = self.faiss_index.search(
np.array(query_embedding).astype('float32'),
min(n_results, self.faiss_index.ntotal)
)
# Get relevant chunks
context_chunks = []
for idx in indices[0]:
if idx != -1 and idx < len(self.knowledge_chunks):
context_chunks.append(self.knowledge_chunks[idx]['text'])
if context_chunks:
return context_chunks
except Exception as e:
print(f"โ ๏ธ Embedding search failed: {e}")
# Fallback to keyword search
return self.keyword_search_medical(query, n_results)
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
"""Medical-focused keyword search"""
if not self.knowledge_chunks:
return []
query_words = set(query.lower().split())
chunk_scores = []
for chunk_info in self.knowledge_chunks:
chunk_text = chunk_info['text']
chunk_words = set(chunk_text.lower().split())
# Calculate relevance score
word_overlap = len(query_words.intersection(chunk_words))
base_score = word_overlap / len(query_words) if query_words else 0
# Boost medical content
medical_boost = 0
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
medical_boost = 0.3
final_score = base_score + medical_boost
if final_score > 0:
chunk_scores.append((final_score, chunk_text))
# Return top matches
chunk_scores.sort(reverse=True)
return [chunk for _, chunk in chunk_scores[:n_results]]
def generate_biogpt_response(self, context: str, query: str) -> str:
"""Generate medical response using BioGPT"""
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup."
try:
# Create medical prompt
prompt = f"""Medical Context: {context[:800]}
Question: {query}
Medical Answer:"""
# Tokenize
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=1024
)
# Move to device
if self.device == "cuda":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.1
)
# Decode response
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract generated part
if "Medical Answer:" in full_response:
generated_response = full_response.split("Medical Answer:")[-1].strip()
else:
generated_response = full_response[len(prompt):].strip()
return self.clean_medical_response(generated_response)
except Exception as e:
print(f"โ ๏ธ BioGPT generation failed: {e}")
return self.fallback_response(context, query)
def clean_medical_response(self, response: str) -> str:
"""Clean and format medical response"""
# Remove incomplete sentences and limit length
sentences = re.split(r'[.!?]+', response)
clean_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
clean_sentences.append(sentence)
if len(clean_sentences) >= 3:
break
if clean_sentences:
cleaned = '. '.join(clean_sentences) + '.'
else:
cleaned = response[:200] + '...' if len(response) > 200 else response
return cleaned
def fallback_response(self, context: str, query: str) -> str:
"""Fallback response when BioGPT fails"""
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
if sentences:
response = sentences[0] + '.'
if len(sentences) > 1:
response += ' ' + sentences[1] + '.'
else:
response = context[:300] + '...'
return response
def handle_conversational_interactions(self, query: str) -> Optional[str]:
"""Handle conversational interactions"""
query_lower = query.lower().strip()
# Greetings
if any(greeting in query_lower for greeting in ['hello', 'hi', 'hey', 'good morning', 'good afternoon']):
return "๐ Hello! I'm your pediatric medical AI assistant. How can I help you with medical questions today?"
# Thanks
if any(thanks in query_lower for thanks in ['thank you', 'thanks', 'thx']):
return "๐ You're welcome! I'm glad I could help. Remember to consult healthcare professionals for medical decisions. What else can I help you with?"
# Goodbyes
if any(bye in query_lower for bye in ['bye', 'goodbye', 'see you later']):
return "๐ Goodbye! Take care and remember to consult healthcare professionals for any medical concerns. Stay healthy!"
return None
def chat(self, query: str) -> str:
"""Main chat function"""
if not query.strip():
return "Hello! I'm your pediatric medical AI assistant. How can I help you today?"
# Handle conversational interactions
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
return conversational_response
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
if not self.model or not self.tokenizer:
return "Medical model not available. Please check the setup and try again."
# Retrieve context
context = self.retrieve_medical_context(query)
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
# Generate response
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
# Format final response
final_response = f"๐ฉบ **Medical Information:** {response}\n\nโ ๏ธ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
return final_response |