Spaces:
Sleeping
Sleeping
File size: 24,716 Bytes
79cca78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
# Setup and Installation
import torch
print("๐ฅ๏ธ System Check:")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print(f"GPU device: {torch.cuda.get_device_name(0)}")
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
else:
print("โ ๏ธ No GPU detected - BioGPT will run on CPU")
print("\n๐ง Loading required packages...")
# Import Libraries
import os
import re
import torch
import warnings
import numpy as np
import faiss # FAISS for vector search
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
BitsAndBytesConfig
)
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
import time
from datetime import datetime
import json
import pickle
# Suppress warnings for cleaner output
warnings.filterwarnings('ignore')
print("๐ Libraries imported successfully!")
print(f"๐ FAISS version: {faiss.__version__}")
print("๐ฏ Using FAISS for vector search")
# BioGPT Medical Chatbot Class
class ColabBioGPTChatbot:
def __init__(self, use_gpu=True, use_8bit=True):
"""Initialize BioGPT chatbot optimized for deployment"""
print("๐ฅ Initializing Professional BioGPT Medical Chatbot...")
# Force CPU for HF Spaces if needed
self.device = "cuda" if torch.cuda.is_available() and use_gpu else "cpu"
self.use_8bit = use_8bit and torch.cuda.is_available()
print(f"๐ฅ๏ธ Using device: {self.device}")
if self.use_8bit:
print("๐พ Using 8-bit quantization for memory efficiency")
# Setup components
self.setup_embeddings()
self.setup_faiss_index()
self.setup_biogpt()
# Conversation tracking
self.conversation_history = []
self.knowledge_chunks = []
print("โ
BioGPT Medical Chatbot ready for professional medical assistance!")
def setup_embeddings(self):
"""Setup medical-optimized embeddings"""
print("๐ง Loading medical embeddings...")
try:
# Use a smaller, more efficient model for deployment
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
print(f"โ
Embeddings loaded (dimension: {self.embedding_dim})")
self.use_embeddings = True
except Exception as e:
print(f"โ ๏ธ Embeddings failed: {e}")
self.embedding_model = None
self.embedding_dim = 384
self.use_embeddings = False
def setup_faiss_index(self):
"""Setup faiss for CPU-based vector search"""
print("๐ง Setting up FAISS vector database...")
try:
print('Using CPU FAISS index for maximum compatibility')
self.faiss_index = faiss.IndexFlatIP(self.embedding_dim)
self.use_gpu_faiss = False
self.faiss_ready = True
self.collection = self.faiss_index
print("โ
FAISS CPU index initialized successfully")
except Exception as e:
print(f"โ FAISS setup failed: {e}")
self.faiss_index = None
self.faiss_ready = False
self.collection = None
def setup_biogpt(self):
"""Setup BioGPT model with optimizations for deployment"""
print("๐ง Loading BioGPT model...")
# Try BioGPT first, fallback to smaller models if needed
model_options = [
"microsoft/BioGPT-Large",
"microsoft/BioGPT", # Smaller version
"microsoft/DialoGPT-medium", # Fallback
"gpt2" # Final fallback
]
for model_name in model_options:
try:
print(f" Attempting to load: {model_name}")
# Setup quantization config for memory efficiency
if self.use_8bit and "BioGPT" in model_name:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
# Set padding token
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
# Load model with proper settings for deployment
start_time = time.time()
model_kwargs = {
"torch_dtype": torch.float16 if self.device == "cuda" else torch.float32,
"trust_remote_code": True,
"low_cpu_mem_usage": True, # Important for deployment
}
if quantization_config:
model_kwargs["quantization_config"] = quantization_config
model_kwargs["device_map"] = "auto"
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
**model_kwargs
)
# Move to device if not using device_map
if self.device == "cuda" and quantization_config is None:
self.model = self.model.to(self.device)
load_time = time.time() - start_time
print(f"โ
{model_name} loaded successfully! ({load_time:.1f} seconds)")
# Test the model
self.test_model()
break # Success, exit the loop
except Exception as e:
print(f"โ {model_name} loading failed: {e}")
if model_name == model_options[-1]: # Last option failed
print("โ All models failed to load")
self.model = None
self.tokenizer = None
continue
def test_model(self):
"""Test the loaded model with a simple query"""
print("๐งช Testing model...")
try:
test_prompt = "Fever in children can be caused by"
inputs = self.tokenizer(test_prompt, return_tensors="pt")
if self.device == "cuda":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=20,
do_sample=True,
temperature=0.7,
pad_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"โ
Model test successful!")
print(f" Test response: {response}")
except Exception as e:
print(f"โ ๏ธ Model test failed: {e}")
def load_medical_data(self, file_path: str):
"""Load and process medical data with progress tracking"""
print(f"๐ Loading medical data from {file_path}...")
try:
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
print(f"๐ File loaded: {len(text):,} characters")
except FileNotFoundError:
print(f"โ File {file_path} not found!")
return False
except Exception as e:
print(f"โ Error loading file: {e}")
return False
# Create chunks optimized for medical content
print("๐ Creating medical-optimized chunks...")
chunks = self.create_medical_chunks(text)
print(f"๐ Created {len(chunks)} medical chunks")
self.knowledge_chunks = chunks
# Generate embeddings with progress and add to FAISS index
if self.use_embeddings and self.embedding_model and self.faiss_ready:
return self.generate_embeddings_with_progress(chunks)
print("โ
Medical data loaded (text search mode)")
return True
def create_medical_chunks(self, text: str, chunk_size: int = 400) -> List[Dict]:
"""Create medically-optimized text chunks"""
chunks = []
# Split by medical sections first
medical_sections = self.split_by_medical_sections(text)
chunk_id = 0
for section in medical_sections:
if len(section.split()) > chunk_size:
# Split large sections by sentences
sentences = re.split(r'[.!?]+', section)
current_chunk = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
if len(current_chunk.split()) + len(sentence.split()) < chunk_size:
current_chunk += sentence + ". "
else:
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
current_chunk = sentence + ". "
if current_chunk.strip():
chunks.append({
'id': chunk_id,
'text': current_chunk.strip(),
'medical_focus': self.identify_medical_focus(current_chunk)
})
chunk_id += 1
else:
chunks.append({
'id': chunk_id,
'text': section,
'medical_focus': self.identify_medical_focus(section)
})
chunk_id += 1
return chunks
def split_by_medical_sections(self, text: str) -> List[str]:
"""Split text by medical sections"""
# Look for medical section headers
section_patterns = [
r'\n\s*(?:SYMPTOMS?|TREATMENT|DIAGNOSIS|CAUSES?|PREVENTION|MANAGEMENT).*?\n',
r'\n\s*\d+\.\s+', # Numbered sections
r'\n\n+' # Paragraph breaks
]
sections = [text]
for pattern in section_patterns:
new_sections = []
for section in sections:
splits = re.split(pattern, section, flags=re.IGNORECASE)
new_sections.extend([s.strip() for s in splits if len(s.strip()) > 100])
sections = new_sections
return sections
def identify_medical_focus(self, text: str) -> str:
"""Identify the medical focus of a text chunk"""
text_lower = text.lower()
# Medical categories
categories = {
'pediatric_symptoms': ['fever', 'cough', 'rash', 'vomiting', 'diarrhea'],
'treatments': ['treatment', 'therapy', 'medication', 'antibiotics'],
'diagnosis': ['diagnosis', 'diagnostic', 'symptoms', 'signs'],
'emergency': ['emergency', 'urgent', 'serious', 'hospital'],
'prevention': ['prevention', 'vaccine', 'immunization', 'avoid']
}
for category, keywords in categories.items():
if any(keyword in text_lower for keyword in keywords):
return category
return 'general_medical'
def generate_embeddings_with_progress(self, chunks: List[Dict]) -> bool:
"""Generate embeddings with progress tracking and add to FAISS index"""
print("๐ฎ Generating medical embeddings and adding to FAISS index...")
if not self.embedding_model or not self.faiss_index:
print("โ Embedding model or FAISS index not available.")
return False
try:
texts = [chunk['text'] for chunk in chunks]
# Generate embeddings in batches with progress
batch_size = 32
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i+batch_size]
batch_embeddings = self.embedding_model.encode(batch_texts, show_progress_bar=False)
all_embeddings.extend(batch_embeddings)
# Show progress
progress = min(i + batch_size, len(texts))
print(f" Progress: {progress}/{len(texts)} chunks processed", end='\r')
print(f"\n โ
Generated embeddings for {len(texts)} chunks")
# Add embeddings to FAISS index
print("๐พ Adding embeddings to FAISS index...")
self.faiss_index.add(np.array(all_embeddings))
print("โ
Medical embeddings added to FAISS index successfully!")
return True
except Exception as e:
print(f"โ Embedding generation or FAISS add failed: {e}")
return False
def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
"""Retrieve relevant medical context using embeddings or keyword search"""
if self.use_embeddings and self.embedding_model and self.faiss_ready:
try:
# Generate query embedding
query_embedding = self.embedding_model.encode([query])
# Search for similar content in FAISS index
distances, indices = self.faiss_index.search(np.array(query_embedding), n_results)
# Retrieve the corresponding chunks
context_chunks = [self.knowledge_chunks[i]['text'] for i in indices[0] if i != -1]
if context_chunks:
return context_chunks
except Exception as e:
print(f"โ ๏ธ Embedding search failed: {e}")
# Fallback to keyword search
print("โ ๏ธ Falling back to keyword search.")
return self.keyword_search_medical(query, n_results)
def keyword_search_medical(self, query: str, n_results: int) -> List[str]:
"""Medical-focused keyword search"""
if not self.knowledge_chunks:
return []
query_words = set(query.lower().split())
chunk_scores = []
for chunk_info in self.knowledge_chunks:
chunk_text = chunk_info['text']
chunk_words = set(chunk_text.lower().split())
# Calculate relevance score
word_overlap = len(query_words.intersection(chunk_words))
base_score = word_overlap / len(query_words) if query_words else 0
# Boost medical content
medical_boost = 0
if chunk_info.get('medical_focus') in ['pediatric_symptoms', 'treatments', 'diagnosis']:
medical_boost = 0.5
final_score = base_score + medical_boost
if final_score > 0:
chunk_scores.append((final_score, chunk_text))
# Return top matches
chunk_scores.sort(reverse=True)
return [chunk for _, chunk in chunk_scores[:n_results]]
def generate_biogpt_response(self, context: str, query: str) -> str:
"""Generate medical response using BioGPT only"""
if not self.model or not self.tokenizer:
return "โ ๏ธ Medical AI model not available. This chatbot requires BioGPT for accurate medical information. Please check the setup or try restarting."
try:
# Create medical-focused prompt
prompt = f"""Medical Context: {context[:800]}
Question: {query}
Medical Answer:"""
# Tokenize input
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=1024
)
# Move inputs to the correct device
if self.device == "cuda":
inputs = {k: v.to(self.device) for k, v in inputs.items()}
# Generate response
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=self.tokenizer.eos_token_id,
repetition_penalty=1.1
)
# Decode response
full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the generated part
if "Medical Answer:" in full_response:
generated_response = full_response.split("Medical Answer:")[-1].strip()
else:
generated_response = full_response[len(prompt):].strip()
# Clean up response
cleaned_response = self.clean_medical_response(generated_response)
return cleaned_response
except Exception as e:
print(f"โ ๏ธ BioGPT generation failed: {e}")
return "โ ๏ธ Unable to generate medical response. The medical AI model encountered an error. Please try rephrasing your question or contact support."
def clean_medical_response(self, response: str) -> str:
"""Clean and format medical response"""
# Remove incomplete sentences and limit length
sentences = re.split(r'[.!?]+', response)
clean_sentences = []
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) > 10 and not sentence.endswith(('and', 'or', 'but', 'however')):
clean_sentences.append(sentence)
if len(clean_sentences) >= 3: # Limit to 3 sentences
break
if clean_sentences:
cleaned = '. '.join(clean_sentences) + '.'
else:
cleaned = response[:200] + '...' if len(response) > 200 else response
return cleaned
def fallback_response(self, context: str, query: str) -> str:
"""Fallback response when BioGPT fails"""
# Extract key sentences from context
sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
if sentences:
response = sentences[0] + '.'
if len(sentences) > 1:
response += ' ' + sentences[1] + '.'
else:
response = context[:300] + '...'
return response
def handle_conversational_interactions(self, query: str) -> Optional[str]:
"""Handle comprehensive conversational interactions"""
query_lower = query.lower().strip()
# Use more specific patterns for greetings
greeting_patterns = [
r'^\s*(hello|hi|hey|hiya|howdy)\s*$',
r'^\s*(good morning|good afternoon|good evening|good day)\s*$',
r'^\s*(what\'s up|whats up|sup|yo)\s*$',
r'^\s*(greetings|salutations)\s*$',
r'^\s*(how are you|how are you doing|how\'s it going|hows it going)\s*$',
r'^\s*(good to meet you|nice to meet you|pleased to meet you)\s*$'
]
for pattern in greeting_patterns:
if re.match(pattern, query_lower):
responses = [
"๐ Hello! I'm BioGPT, your professional medical AI assistant specialized in pediatric medicine. I'm here to provide evidence-based medical information. What health concern can I help you with today?",
"๐ฅ Hi there! I'm a medical AI assistant powered by BioGPT, trained on medical literature. I can help answer questions about children's health and medical conditions. How can I assist you?",
"๐ Greetings! I'm your AI medical consultant, ready to help with pediatric health questions using the latest medical knowledge. What would you like to know about?"
]
return np.random.choice(responses)
# Handle thanks and other conversational patterns...
# (keeping the rest of the conversational handling as before)
# Return None if no conversational pattern matches
return None
def chat(self, query: str) -> str:
"""Main chat function with BioGPT medical-only responses"""
if not query.strip():
return "Hello! I'm BioGPT, your professional medical AI assistant. How can I help you with pediatric medical questions today?"
# Handle comprehensive conversational interactions first
conversational_response = self.handle_conversational_interactions(query)
if conversational_response:
# Add to conversation history
self.conversation_history.append({
'query': query,
'response': conversational_response,
'timestamp': datetime.now().isoformat(),
'type': 'conversational'
})
return conversational_response
# Check if medical model is available
if not self.model or not self.tokenizer:
return "โ ๏ธ **Medical AI Unavailable**: This chatbot requires BioGPT for accurate medical information. The medical model failed to load. Please contact support or try restarting the application."
if not self.knowledge_chunks:
return "Please load medical data first to access the medical knowledge base."
print(f"๐ Processing medical query: {query}")
# Retrieve relevant medical context using FAISS or keyword search
start_time = time.time()
context = self.retrieve_medical_context(query)
retrieval_time = time.time() - start_time
if not context:
return "I don't have specific information about this topic in my medical database. Please consult with a healthcare professional for personalized medical advice."
print(f" ๐ Context retrieved ({retrieval_time:.2f}s)")
# Generate response with BioGPT
start_time = time.time()
main_context = '\n\n'.join(context)
response = self.generate_biogpt_response(main_context, query)
generation_time = time.time() - start_time
print(f" ๐ง Response generated ({generation_time:.2f}s)")
# Format final response
final_response = f"๐ฉบ **Medical Information:** {response}\n\nโ ๏ธ **Important:** This information is for educational purposes only. Always consult with qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."
# Add to conversation history
self.conversation_history.append({
'query': query,
'response': final_response,
'timestamp': datetime.now().isoformat(),
'retrieval_time': retrieval_time,
'generation_time': generation_time,
'type': 'medical'
})
return final_response
def get_conversation_summary(self) -> Dict:
"""Get conversation statistics"""
if not self.conversation_history:
return {"message": "No conversations yet"}
# Filter medical conversations for performance stats
medical_conversations = [h for h in self.conversation_history if h.get('type') == 'medical']
if not medical_conversations:
return {
"total_conversations": len(self.conversation_history),
"medical_conversations": 0,
"conversational_interactions": len(self.conversation_history),
"model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model",
"vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search",
"device": self.device
}
avg_retrieval_time = sum(h.get('retrieval_time', 0) for h in medical_conversations) / len(medical_conversations)
avg_generation_time = sum(h.get('generation_time', 0) for h in medical_conversations) / len(medical_conversations)
return {
"total_conversations": len(self.conversation_history),
"medical_conversations": len(medical_conversations),
"conversational_interactions": len(self.conversation_history) - len(medical_conversations),
"avg_retrieval_time": f"{avg_retrieval_time:.2f}s",
"avg_generation_time": f"{avg_generation_time:.2f}s",
"model_info": "BioGPT" if self.model and "BioGPT" in str(type(self.model)) else "Fallback Model",
"vector_search": "FAISS CPU" if self.faiss_ready else "Keyword Search",
"device": self.device,
"quantization": "8-bit" if self.use_8bit else "16-bit/32-bit"
}
|