File size: 30,159 Bytes
1e7b118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
import os
import re
import torch
import warnings
import numpy as np
import gradio as gr
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    BitsAndBytesConfig
)
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Optional
import time
from datetime import datetime

# Suppress warnings
warnings.filterwarnings('ignore')

class BioGPTMedicalChatbot:
    def __init__(self):
        """Initialize BioGPT chatbot for Gradio deployment"""
        print("🏥 Initializing BioGPT Medical Chatbot...")
        
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.use_8bit = torch.cuda.is_available()
        
        print(f"🖥️ Using device: {self.device}")
        
        # Setup components
        self.setup_embeddings()
        self.setup_biogpt()
        
        # Knowledge base and conversation tracking
        self.knowledge_chunks = []
        self.conversation_history = []
        
        # Load default medical knowledge
        self.load_default_medical_knowledge()
        
        print("✅ BioGPT Medical Chatbot ready!")

    def setup_embeddings(self):
        """Setup medical embeddings"""
        try:
            print("🔧 Loading embeddings...")
            self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
            self.use_embeddings = True
            print("✅ Embeddings loaded successfully")
        except Exception as e:
            print(f"⚠️ Embeddings failed: {e}")
            self.embedding_model = None
            self.use_embeddings = False

    def setup_biogpt(self):
        """Setup BioGPT model with fallback"""
        print("🧠 Loading BioGPT model...")
        
        # Try BioGPT first, then fallback to smaller model
        models_to_try = [
            "microsoft/BioGPT-Large",
            "microsoft/BioGPT", 
            "microsoft/DialoGPT-medium"
        ]
        
        for model_name in models_to_try:
            try:
                print(f"   Trying {model_name}...")
                
                # Setup quantization for memory efficiency
                quantization_config = None
                if self.use_8bit and "BioGPT" in model_name:
                    quantization_config = BitsAndBytesConfig(
                        load_in_8bit=True,
                        llm_int8_threshold=6.0,
                    )

                # Load tokenizer
                self.tokenizer = AutoTokenizer.from_pretrained(model_name)
                if self.tokenizer.pad_token is None:
                    self.tokenizer.pad_token = self.tokenizer.eos_token

                # Load model
                self.model = AutoModelForCausalLM.from_pretrained(
                    model_name,
                    quantization_config=quantization_config,
                    torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
                    device_map="auto" if self.device == "cuda" and quantization_config else None,
                    trust_remote_code=True
                )
                
                if self.device == "cuda" and quantization_config is None:
                    self.model = self.model.to(self.device)
                
                print(f"✅ Successfully loaded {model_name}!")
                self.model_name = model_name
                return
                
            except Exception as e:
                print(f"❌ Failed to load {model_name}: {e}")
                continue
        
        # If all models fail
        print("❌ All models failed to load")
        self.model = None
        self.tokenizer = None
        self.model_name = "None"

    def load_default_medical_knowledge(self):
        """Load comprehensive medical knowledge base"""
        default_knowledge = [
            {
                'id': 0,
                'text': "Fever in children is commonly caused by viral infections (most common), bacterial infections, immunizations, teething in infants, or overdressing. Normal body temperature ranges from 97°F to 100.4°F (36.1°C to 38°C). A fever is generally considered when oral temperature exceeds 100.4°F (38°C). Most fevers are not dangerous and help the body fight infection. Treatment includes rest, fluids, and fever reducers like acetaminophen or ibuprofen for comfort.",
                'medical_focus': 'pediatric_symptoms'
            },
            {
                'id': 1,
                'text': "Dehydration in infants and children can occur rapidly, especially during illness with vomiting or diarrhea. Warning signs include: dry mouth and tongue, decreased urination, lethargy or irritability, sunken eyes, and in infants under 12 months, sunken fontanelle (soft spot). Mild dehydration can be treated with oral rehydration solutions or clear fluids. Severe dehydration requires immediate medical attention.",
                'medical_focus': 'pediatric_symptoms'
            },
            {
                'id': 2,
                'text': "Common cold symptoms in children include runny or stuffy nose, cough, low-grade fever, sneezing, and general fussiness. Most colds are viral and resolve within 7-10 days without specific treatment. Treatment focuses on comfort measures: rest, adequate fluids, humidified air, and saline nasal drops for congestion. Antibiotics are not effective against viral colds.",
                'medical_focus': 'pediatric_symptoms'
            },
            {
                'id': 3,
                'text': "Emergency warning signs in children requiring immediate medical attention include: severe difficulty breathing, persistent high fever over 104°F (40°C), signs of severe dehydration, persistent vomiting preventing fluid intake, severe headache with neck stiffness, altered consciousness or extreme lethargy, severe abdominal pain, or any concerning change in behavior. When in doubt, seek medical care.",
                'medical_focus': 'emergency'
            },
            {
                'id': 4,
                'text': "Childhood vaccination schedules protect against serious diseases including measles, mumps, rubella, polio, hepatitis B, Haemophilus influenzae, pneumococcal disease, and others. Vaccines are rigorously tested for safety and effectiveness. Side effects are typically mild, such as low-grade fever or soreness at injection site. Following recommended vaccination schedules protects individual children and the community.",
                'medical_focus': 'prevention'
            },
            {
                'id': 5,
                'text': "Persistent cough in children can be caused by viral upper respiratory infections, asthma, allergies, bacterial infections, or irritants. Most coughs from colds resolve within 2-3 weeks. Seek medical evaluation for coughs lasting more than 3 weeks, coughs with blood, difficulty breathing, or coughs severely interfering with sleep. Treatment depends on the underlying cause.",
                'medical_focus': 'pediatric_symptoms'
            },
            {
                'id': 6,
                'text': "Skin rashes in children have many causes including viral infections (roseola, fifth disease), bacterial infections, eczema, allergic reactions, heat rash, or contact dermatitis. Most viral rashes are harmless and resolve on their own. Seek medical attention for rashes with high fever, rapidly spreading rashes, blistering, or signs of infection like pus or red streaking.",
                'medical_focus': 'pediatric_symptoms'
            },
            {
                'id': 7,
                'text': "Stomach pain and abdominal pain in children can result from constipation, gas, viral gastroenteritis, food intolerance, appendicitis, or emotional stress. Most stomach aches are mild and resolve quickly with rest and clear fluids. Warning signs requiring immediate medical attention include severe pain, persistent vomiting, fever with abdominal pain, or pain preventing normal activities.",
                'medical_focus': 'pediatric_symptoms'
            },
            {
                'id': 8,
                'text': "Sleep problems in children may include difficulty falling asleep, frequent night wakings, early morning awakening, or nightmares. Good sleep hygiene includes consistent bedtime routines, appropriate sleep environment (cool, dark, quiet), limiting screen time before bed, adequate physical activity during the day, and avoiding caffeine. Most sleep issues improve with consistent routines.",
                'medical_focus': 'general_medical'
            },
            {
                'id': 9,
                'text': "Nutrition for children should include a variety of foods from all food groups: fruits, vegetables, whole grains, lean protein sources, and dairy or dairy alternatives. Limit processed foods, sugary drinks, and excessive snacks. Breastfeeding is recommended for infants for the first 6 months, with introduction of solid foods around 6 months while continuing breastfeeding.",
                'medical_focus': 'prevention'
            },
            {
                'id': 10,
                'text': "Vomiting in children can be caused by viral gastroenteritis (stomach flu), food poisoning, motion sickness, or other illnesses. Most episodes are brief and resolve within 24-48 hours. Focus on preventing dehydration with small, frequent sips of clear fluids. Seek medical care for persistent vomiting, signs of dehydration, blood in vomit, or severe abdominal pain.",
                'medical_focus': 'pediatric_symptoms'
            },
            {
                'id': 11,
                'text': "Diarrhea in children is often caused by viral infections, bacterial infections, food intolerance, or medications. Most cases resolve within a few days. Prevention of dehydration is key - offer clear fluids and oral rehydration solutions. Seek medical attention for bloody stools, signs of dehydration, persistent high fever, or diarrhea lasting more than a week.",
                'medical_focus': 'pediatric_symptoms'
            },
            {
                'id': 12,
                'text': "Breathing difficulties in children can range from mild congestion to serious respiratory distress. Signs of serious breathing problems include rapid breathing, retractions (pulling in around ribs), wheezing, blue lips or fingernails, or extreme difficulty speaking. Mild congestion can be helped with humidified air and saline drops. Severe breathing difficulties require immediate medical attention.",
                'medical_focus': 'emergency'
            },
            {
                'id': 13,
                'text': "Common childhood injuries include cuts, scrapes, bruises, and minor burns. Basic first aid includes cleaning wounds with soap and water, applying pressure to stop bleeding, and covering with clean bandages. Seek medical care for deep cuts requiring stitches, burns larger than a quarter, head injuries with loss of consciousness, or any injury causing severe pain or inability to move normally.",
                'medical_focus': 'emergency'
            },
            {
                'id': 14,
                'text': "Ear infections are common in children and can cause ear pain, fever, irritability, and sometimes drainage from the ear. Many ear infections resolve on their own, but some require antibiotic treatment. Pain can be managed with appropriate pain relievers. Seek medical evaluation for severe ear pain, high fever, or symptoms lasting more than 2-3 days.",
                'medical_focus': 'pediatric_symptoms'
            }
        ]
        
        self.knowledge_chunks = default_knowledge
        print(f"📚 Loaded {len(default_knowledge)} comprehensive medical knowledge chunks")

    def retrieve_medical_context(self, query: str, n_results: int = 3) -> List[str]:
        """Retrieve relevant medical context using improved keyword search"""
        if not self.knowledge_chunks:
            return []
            
        query_words = set(query.lower().split())
        chunk_scores = []

        # Enhanced medical keyword mapping
        medical_keywords = {
            'fever': ['fever', 'temperature', 'hot', 'warm', 'burning'],
            'cough': ['cough', 'coughing', 'respiratory', 'breathing'],
            'stomach': ['stomach', 'abdominal', 'belly', 'tummy', 'pain', 'ache'],
            'rash': ['rash', 'skin', 'red', 'spots', 'bumps', 'itchy'],
            'vomiting': ['vomit', 'vomiting', 'throw up', 'sick', 'nausea'],
            'diarrhea': ['diarrhea', 'loose', 'stool', 'bowel', 'poop'],
            'dehydration': ['dehydration', 'dehydrated', 'fluids', 'water', 'thirsty'],
            'breathing': ['breathing', 'breath', 'respiratory', 'lungs', 'airways'],
            'emergency': ['emergency', 'urgent', 'serious', 'severe', 'hospital', 'doctor'],
            'cold': ['cold', 'runny nose', 'congestion', 'sneezing'],
            'sleep': ['sleep', 'sleeping', 'bedtime', 'insomnia', 'tired'],
            'nutrition': ['nutrition', 'eating', 'food', 'diet', 'feeding'],
            'vaccination': ['vaccine', 'vaccination', 'immunization', 'shot'],
            'injury': ['injury', 'hurt', 'cut', 'burn', 'bruise', 'accident'],
            'ear': ['ear', 'hearing', 'earache', 'infection']
        }

        # Expand query with related medical terms
        expanded_query_words = set(query_words)
        for medical_term, synonyms in medical_keywords.items():
            if any(word in query_lower for word in synonyms):
                expanded_query_words.update(synonyms)

        for chunk_info in self.knowledge_chunks:
            chunk_text = chunk_info['text'].lower()
            
            # Calculate relevance score with expanded terms
            word_overlap = sum(1 for word in expanded_query_words if word in chunk_text)
            base_score = word_overlap / len(expanded_query_words) if expanded_query_words else 0

            # Strong boost for medical focus alignment
            medical_boost = 0
            medical_focus = chunk_info.get('medical_focus', '')
            
            if medical_focus == 'pediatric_symptoms':
                medical_boost = 0.5
            elif medical_focus == 'emergency':
                medical_boost = 0.4
            elif medical_focus in ['treatments', 'diagnosis']:
                medical_boost = 0.3
            elif medical_focus == 'prevention':
                medical_boost = 0.2

            final_score = base_score + medical_boost

            if final_score > 0:
                chunk_scores.append((final_score, chunk_info['text']))

        # Return top matches - ensure we always have at least some context
        chunk_scores.sort(reverse=True)
        results = [chunk for _, chunk in chunk_scores[:n_results]]
        
        # If no good matches, return some default medical chunks
        if not results:
            results = [chunk['text'] for chunk in self.knowledge_chunks[:2]]
            
        return results

    def generate_biogpt_response(self, context: str, query: str) -> str:
        """Generate medical response using BioGPT"""
        if not self.model or not self.tokenizer:
            return "Medical model not available. Please try again later."

        try:
            # Create medical prompt
            prompt = f"""Medical Context: {context[:800]}

Question: {query}

Medical Answer:"""

            # Tokenize input
            inputs = self.tokenizer(
                prompt,
                return_tensors="pt",
                truncation=True,
                max_length=1024
            )

            # Move inputs to device
            if self.device == "cuda":
                inputs = {k: v.to(self.device) for k, v in inputs.items()}

            # Generate response
            with torch.no_grad():
                outputs = self.model.generate(
                    **inputs,
                    max_new_tokens=150,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9,
                    pad_token_id=self.tokenizer.eos_token_id,
                    repetition_penalty=1.1
                )

            # Decode response
            full_response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)

            # Extract generated part
            if "Medical Answer:" in full_response:
                generated_response = full_response.split("Medical Answer:")[-1].strip()
            else:
                generated_response = full_response[len(prompt):].strip()

            return self.clean_medical_response(generated_response)

        except Exception as e:
            print(f"⚠️ BioGPT generation failed: {e}")
            return self.fallback_response(context, query)

    def clean_medical_response(self, response: str) -> str:
        """Clean medical response"""
        sentences = re.split(r'[.!?]+', response)
        clean_sentences = []

        for sentence in sentences:
            sentence = sentence.strip()
            if len(sentence) > 10:
                clean_sentences.append(sentence)
            if len(clean_sentences) >= 3:
                break

        if clean_sentences:
            cleaned = '. '.join(clean_sentences) + '.'
        else:
            cleaned = response[:200] + '...' if len(response) > 200 else response

        return cleaned

    def fallback_response(self, context: str, query: str) -> str:
        """Fallback response when model fails"""
        sentences = [s.strip() for s in context.split('.') if len(s.strip()) > 20]
        
        if sentences:
            response = sentences[0] + '.'
            if len(sentences) > 1:
                response += ' ' + sentences[1] + '.'
        else:
            response = context[:300] + '...'
            
        return response

    def handle_conversational_interactions(self, query: str) -> Optional[str]:
        """Handle conversational interactions"""
        query_lower = query.lower().strip()

        # Greetings
        greeting_patterns = [
            r'^\s*(hello|hi|hey)\s*,
            r'^\s*(good morning|good afternoon|good evening)\s*,
            r'^\s*(how are you)\s*
        ]

        for pattern in greeting_patterns:
            if re.match(pattern, query_lower):
                return "👋 Hello! I'm BioGPT, your AI medical assistant specialized in pediatric medicine. I provide evidence-based medical information. What health concern can I help you with today?"

        # Thanks
        if any(word in query_lower for word in ['thank you', 'thanks', 'helpful']):
            return "🙏 You're welcome! I'm glad I could provide helpful medical information. Remember to always consult healthcare providers for personalized advice. Feel free to ask more questions!"

        # About/Help
        if any(word in query_lower for word in ['what are you', 'who are you', 'help', 'what can you do']):
            return """🤖 **About BioGPT Medical Assistant**

I'm an AI medical assistant powered by BioGPT, specialized in pediatric medicine. I can help with:

🩺 **Medical Information:**
• Pediatric symptoms and conditions
• Treatment guidance  
• When to seek medical care
• Prevention and wellness

⚠️ **Important:** I provide educational information only. Always consult healthcare professionals for medical decisions."""

        return None

    def chat_interface(self, message: str, history: List[List[str]]) -> str:
        """Main chat interface for Gradio - FIXED to prevent greeting mode stuck"""
        if not message.strip():
            return "Hello! I'm BioGPT, your medical AI assistant. How can I help you with pediatric medical questions today?"

        print(f"🔍 Processing query: '{message}'")  # Debug logging

        # Handle ONLY very specific conversational interactions
        conversational_response = self.handle_conversational_interactions(message)
        if conversational_response:
            print("   Handled as conversational")  # Debug
            return conversational_response

        print("   Processing as medical query")  # Debug

        # ALWAYS try to process as medical query if not a strict greeting
        context = self.retrieve_medical_context(message)
        
        if not context:
            # Even if no context found, provide a helpful medical response
            return f"""🩺 **Medical Query:** {message}

⚠️ I don't have specific information about this topic in my current medical database. However, I recommend:

1. **Consult Healthcare Provider**: For personalized medical advice
2. **Emergency Signs**: If symptoms are severe, seek immediate care
3. **Reliable Sources**: Check with pediatricians for children's health concerns

**For urgent medical concerns, contact your healthcare provider or emergency services.**

💡 **Try asking about**: fever, cough, rash, dehydration, or other common pediatric symptoms."""

        # Generate medical response
        main_context = '\n\n'.join(context)
        response = self.generate_biogpt_response(main_context, message)

        # Always format as medical response
        final_response = f"🩺 **Medical Information:** {response}\n\n⚠️ **Important:** This information is for educational purposes only. Always consult qualified healthcare professionals for medical diagnosis, treatment, and personalized advice."

        return final_response

# Test function to verify chatbot functionality
def test_chatbot_responses():
    """Test the chatbot with various queries to ensure it's working properly"""
    print("\n🧪 Testing BioGPT Chatbot Responses...")
    print("=" * 50)
    
    test_queries = [
        "hello",  # Should be conversational
        "what causes fever",  # Should be medical
        "my child has a cough",  # Should be medical
        "help",  # Should be conversational
        "breathing problems in babies",  # Should be medical
        "thank you"  # Should be conversational
    ]
    
    for query in test_queries:
        print(f"\n🔍 Query: '{query}'")
        response = chatbot.chat_interface(query, [])
        print(f"🤖 Response type: {'CONVERSATIONAL' if any(word in response for word in ['Hello!', 'welcome!', 'About BioGPT']) else 'MEDICAL'}")
        print(f"📝 Response: {response[:100]}...")
        print("-" * 30)

# Initialize the chatbot globally
print("🚀 Initializing BioGPT Medical Chatbot for Gradio...")
chatbot = BioGPTMedicalChatbot()

# Run tests
test_chatbot_responses()

def create_gradio_interface():
    """Create Gradio chat interface"""
    
    # Custom CSS for medical theme
    css = """
    .gradio-container {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    }
    .chat-message {
        background-color: #f8f9fa;
        border-radius: 10px;
        padding: 10px;
        margin: 5px;
    }
    """
    
    with gr.Blocks(
        css=css,
        title="BioGPT Medical Assistant",
        theme=gr.themes.Soft()
    ) as demo:
        
        # Header
        gr.HTML("""
        <div style="text-align: center; padding: 20px; background: linear-gradient(90deg, #667eea, #764ba2); color: white; border-radius: 10px; margin-bottom: 20px;">
            <h1>🏥 BioGPT Medical Assistant</h1>
            <p>Professional AI Medical Chatbot powered by BioGPT</p>
            <p><strong>Specialized in Pediatric Medicine & Children's Health</strong></p>
        </div>
        """)
        
        # Important disclaimer
        gr.HTML("""
        <div style="background-color: #fff3cd; border: 1px solid #ffeaa7; border-radius: 8px; padding: 15px; margin-bottom: 20px;">
            <h3 style="color: #856404; margin-top: 0;">⚠️ Medical Disclaimer</h3>
            <p style="color: #856404; margin-bottom: 0;">
                This AI provides educational medical information only and is NOT a substitute for professional medical advice, 
                diagnosis, or treatment. Always consult qualified healthcare providers for medical decisions.
                <strong>In case of medical emergency, call emergency services immediately.</strong>
            </p>
        </div>
        """)
        
        # Chat interface
        chatbot_interface = gr.ChatInterface(
            fn=chatbot.chat_interface,
            title="💬 Chat with BioGPT",
            description="Ask me about pediatric health, symptoms, treatments, and medical guidance.",
            examples=[
                "What causes fever in children?",
                "How should I treat my child's cough?",
                "When should I be concerned about my baby's breathing?",
                "What are the signs of dehydration in infants?",
                "When should I call the doctor for my child's symptoms?",
                "How can I prevent common childhood illnesses?"
            ],
            retry_btn=None,
            undo_btn=None,
            clear_btn="🗑️ Clear Chat",
            submit_btn="🩺 Ask BioGPT",
            chatbot=gr.Chatbot(
                height=500,
                placeholder="<div style='text-align: center; color: #666;'>Start a conversation with BioGPT Medical Assistant</div>",
                show_copy_button=True,
                bubble_full_width=False
            )
        )
        
        # Information tabs
        with gr.Tabs():
            with gr.Tab("ℹ️ About"):
                gr.Markdown("""
                ## About BioGPT Medical Assistant
                
                This AI assistant is powered by **BioGPT**, a specialized medical language model trained on extensive medical literature.
                
                ### 🎯 Capabilities:
                - **Pediatric Medicine**: Specialized in children's health
                - **Symptom Analysis**: Understanding medical symptoms
                - **Treatment Guidance**: Evidence-based treatment information
                - **Medical Education**: Explaining medical concepts
                - **Emergency Guidance**: When to seek immediate care
                
                ### 🔧 Technical Features:
                - **Model**: Microsoft BioGPT (Medical AI)
                - **Specialization**: Medical and biomedical text
                - **Knowledge**: Based on medical literature and research
                - **Optimization**: Memory-efficient deployment
                
                ### 📱 How to Use:
                1. Type your medical question in the chat
                2. Be specific about symptoms or concerns
                3. Ask about pediatric health topics
                4. Request guidance on when to seek care
                """)
            
            with gr.Tab("🩺 Medical Topics"):
                gr.Markdown("""
                ## Supported Medical Topics
                
                ### 👶 Pediatric Specialties:
                - **Common Symptoms**: Fever, cough, rash, vomiting, diarrhea
                - **Respiratory**: Breathing issues, asthma, colds
                - **Digestive**: Stomach problems, feeding issues
                - **Skin**: Rashes, eczema, allergic reactions
                - **Development**: Growth and developmental concerns
                
                ### 🚨 Emergency Guidance:
                - When to call emergency services
                - Signs requiring immediate medical attention
                - First aid basics for children
                
                ### 💊 Treatment Information:
                - Evidence-based treatment options
                - Home care remedies
                - Safety considerations
                - Recovery expectations
                
                ### 🛡️ Prevention:
                - Vaccination information
                - Disease prevention
                - Healthy habits for children
                - Safety measures
                """)
            
            with gr.Tab("⚠️ Safety & Limitations"):
                gr.Markdown("""
                ## Important Safety Information
                
                ### 🚨 Emergency Situations - Call Emergency Services:
                - Difficulty breathing or choking
                - Severe allergic reactions
                - Unconsciousness or unresponsiveness
                - Severe injuries or accidents
                - Persistent high fever (>104°F/40°C)
                
                ### 🏥 When to Consult Healthcare Providers:
                - For diagnosis of medical conditions
                - Before starting any treatments
                - For prescription medications
                - When symptoms worsen or persist
                - For personalized medical advice
                
                ### 🤖 AI Limitations:
                - Cannot diagnose medical conditions
                - Cannot prescribe medications
                - Cannot replace professional medical judgment
                - May not have latest medical developments
                - Should not be used for emergency situations
                
                ### 📞 Additional Resources:
                - **Emergency**: Your local emergency number
                - **Poison Control**: Contact local poison control
                - **Pediatrician**: Your child's healthcare provider
                - **Nurse Hotline**: 24/7 nurse consultations (many insurance plans)
                """)
        
        # Footer
        gr.HTML("""
        <div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #ddd; color: #666;">
            <p>🤖 <strong>BioGPT Medical Assistant</strong> | Powered by Microsoft BioGPT</p>
            <p>For educational purposes only • Always consult healthcare professionals</p>
        </div>
        """)
    
    return demo

# Create and launch the interface
demo = create_gradio_interface()

if __name__ == "__main__":
    # Launch the app
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )