Update app.py
Browse files
app.py
CHANGED
@@ -35,11 +35,22 @@ def parse_transcription(logits):
|
|
35 |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
36 |
return transcription
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def parse(wav_file, applyLM):
|
39 |
input_values = read_file_and_process(wav_file)
|
40 |
with torch.no_grad():
|
41 |
logits = model(**input_values).logits
|
42 |
-
|
43 |
if applyLM:
|
44 |
# return parse_transcription_with_lm(logits)
|
45 |
return "done"
|
@@ -52,7 +63,7 @@ def parse(wav_file, applyLM):
|
|
52 |
# model_id = "Harveenchadha/odia_large_wav2vec2"
|
53 |
|
54 |
# It worked when first run but after that getting error
|
55 |
-
model_id = "anuragshas/wav2vec2-large-xlsr-53-odia"
|
56 |
|
57 |
# model_id = "theainerd/wav2vec2-large-xlsr-53-odia"
|
58 |
|
@@ -62,21 +73,59 @@ model_id = "anuragshas/wav2vec2-large-xlsr-53-odia"
|
|
62 |
|
63 |
# model_id = "theainerd/wav2vec2-large-xlsr-53-odia"
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
68 |
-
# processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained(model_id)
|
69 |
model = Wav2Vec2ForCTC.from_pretrained(model_id)
|
70 |
|
71 |
-
|
72 |
-
input_ = gr.Audio(source="microphone", type="filepath")
|
73 |
txtbox = gr.Textbox(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
chkbox = gr.Checkbox(label="Apply LM", value=False)
|
78 |
|
79 |
-
|
80 |
-
gr.Interface(parse, inputs = [input_, chkbox], outputs=txtbox,
|
81 |
streaming=True, interactive=True,
|
82 |
-
analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
36 |
return transcription
|
37 |
|
38 |
+
# def parse(wav_file, applyLM):
|
39 |
+
# input_values = read_file_and_process(wav_file)
|
40 |
+
# with torch.no_grad():
|
41 |
+
# logits = model(**input_values).logits
|
42 |
+
|
43 |
+
# if applyLM:
|
44 |
+
# # return parse_transcription_with_lm(logits)
|
45 |
+
# return "done"
|
46 |
+
# else:
|
47 |
+
# return parse_transcription(logits)
|
48 |
+
|
49 |
def parse(wav_file, applyLM):
|
50 |
input_values = read_file_and_process(wav_file)
|
51 |
with torch.no_grad():
|
52 |
logits = model(**input_values).logits
|
53 |
+
|
54 |
if applyLM:
|
55 |
# return parse_transcription_with_lm(logits)
|
56 |
return "done"
|
|
|
63 |
# model_id = "Harveenchadha/odia_large_wav2vec2"
|
64 |
|
65 |
# It worked when first run but after that getting error
|
66 |
+
# model_id = "anuragshas/wav2vec2-large-xlsr-53-odia"
|
67 |
|
68 |
# model_id = "theainerd/wav2vec2-large-xlsr-53-odia"
|
69 |
|
|
|
73 |
|
74 |
# model_id = "theainerd/wav2vec2-large-xlsr-53-odia"
|
75 |
|
76 |
+
# This is hindi
|
77 |
+
model_id = "Harveenchadha/vakyansh-wav2vec2-hindi-him-4200"
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
# processor = Wav2Vec2Processor.from_pretrained(model_id)
|
82 |
+
# # processor_with_LM = Wav2Vec2ProcessorWithLM.from_pretrained(model_id)
|
83 |
+
# model = Wav2Vec2ForCTC.from_pretrained(model_id)
|
84 |
+
|
85 |
+
|
86 |
+
# input_ = gr.Audio(source="microphone", type="filepath")
|
87 |
+
# txtbox = gr.Textbox(
|
88 |
+
# label="Output from model will appear here:",
|
89 |
+
# lines=5
|
90 |
+
# )
|
91 |
+
# chkbox = gr.Checkbox(label="Apply LM", value=False)
|
92 |
+
|
93 |
+
|
94 |
+
# gr.Interface(parse, inputs = [input_, chkbox], outputs=txtbox,
|
95 |
+
# streaming=True, interactive=True,
|
96 |
+
# analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
|
101 |
|
102 |
processor = Wav2Vec2Processor.from_pretrained(model_id)
|
|
|
103 |
model = Wav2Vec2ForCTC.from_pretrained(model_id)
|
104 |
|
105 |
+
input_ = gr.inputs.File(source="upload", type="audio") # Change input source to "upload" and type to "audio"
|
|
|
106 |
txtbox = gr.Textbox(
|
107 |
+
label="Output from the model will appear here:",
|
108 |
+
lines=5
|
109 |
+
)
|
110 |
chkbox = gr.Checkbox(label="Apply LM", value=False)
|
111 |
|
112 |
+
gr.Interface(parse, inputs=[input_, chkbox], outputs=txtbox,
|
|
|
113 |
streaming=True, interactive=True,
|
114 |
+
analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False);
|
115 |
+
|
116 |
+
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|