import gradio as gr
import torch
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from src.model import ClipSegMultiClassModel
from src.config import ClipSegMultiClassConfig
# === Load model ===
class_labels = ["background", "Pig", "Horse", "Sheep"]
label2color = {
0: [0, 0, 0],
1: [255, 0, 0],
2: [0, 255, 0],
3: [0, 0, 255],
}
config = ClipSegMultiClassConfig(
class_labels=class_labels,
label2color=label2color,
model="CIDAS/clipseg-rd64-refined",
)
model = ClipSegMultiClassModel.from_pretrained("BioMike/clipsegmulticlass_v1")
model.eval()
def colorize_mask(mask_tensor, label2color):
mask = mask_tensor.squeeze().cpu().numpy()
h, w = mask.shape
color_mask = np.zeros((h, w, 3), dtype=np.uint8)
for class_id, color in label2color.items():
color_mask[mask == class_id] = color
return color_mask
def segment_with_legend(input_img):
if isinstance(input_img, str):
input_img = Image.open(input_img).convert("RGB")
elif isinstance(input_img, np.ndarray):
input_img = Image.fromarray(input_img).convert("RGB")
pred_mask = model.predict(input_img)
color_mask = colorize_mask(pred_mask, label2color)
overlay = Image.blend(input_img.resize((color_mask.shape[1], color_mask.shape[0])), Image.fromarray(color_mask), alpha=0.5)
fig, ax = plt.subplots(figsize=(8, 6))
ax.imshow(overlay)
ax.axis("off")
legend_patches = [
plt.Line2D([0], [0], marker='o', color='w',
label=label,
markerfacecolor=np.array(color) / 255.0,
markersize=10)
for label, color in zip(class_labels, label2color.values())
]
ax.legend(handles=legend_patches, loc='lower right', framealpha=0.8)
return fig
demo = gr.Interface(
fn=segment_with_legend,
inputs=gr.Image(type="pil", label="Input Image"),
outputs=gr.Plot(label="Segmentation with Legend"),
title="ClipSeg MultiClass Demo",
description="Upload an image containing pigs, sheep, or horses. The model will segment the animals and colorize them. \
Legend: Red = Pig, Green = Horse, Blue = Sheep."
)
if __name__ == "__main__":
demo.launch()