from transformers import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class ClipSegMultiClassConfig(PretrainedConfig): model_type = "clipseg-multiclass" is_composition = False def __init__( self, class_labels=None, label2color=None, model="CIDAS/clipseg-rd64-refined", image_size=352, **kwargs ): super().__init__(**kwargs) self.class_labels = class_labels or [] self.num_classes = len(self.class_labels) self.label2color = label2color or { i: [ int(255 * (i / max(1, self.num_classes - 1))), 0, 255 - int(255 * (i / max(1, self.num_classes - 1))) ] for i in range(self.num_classes) } self.model = model self.image_size = image_size