BioMike's picture
Upload 3 files
4875d48 verified
raw
history blame
5.51 kB
from dataclasses import dataclass
from typing import Optional, Tuple, Union, List
from PIL import Image
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import (
PreTrainedModel,
CLIPSegProcessor,
CLIPSegForImageSegmentation,
)
from transformers.modeling_outputs import ModelOutput
from .config import ClipSegMultiClassConfig
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
import numpy as np
from torch.utils.data import DataLoader
from collections import defaultdict
def flatten_outputs(preds, targets, num_classes):
"""Flatten predictions and targets to 1D arrays, filter ignored labels."""
preds = preds.cpu().numpy().reshape(-1)
targets = targets.cpu().numpy().reshape(-1)
mask = (targets >= 0) & (targets < num_classes)
return preds[mask], targets[mask]
def compute_metrics(all_preds, all_targets, num_classes, average="macro"):
y_pred = np.concatenate(all_preds)
y_true = np.concatenate(all_targets)
metrics = {
"accuracy": accuracy_score(y_true, y_pred),
"precision": precision_score(y_true, y_pred, average=average, zero_division=0),
"recall": recall_score(y_true, y_pred, average=average, zero_division=0),
"f1": f1_score(y_true, y_pred, average=average, zero_division=0),
}
return metrics
@dataclass
class ClipSegMultiClassOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
predictions: Optional[torch.LongTensor] = None
class ClipSegMultiClassModel(PreTrainedModel):
config_class = ClipSegMultiClassConfig
base_model_prefix = "clipseg_multiclass"
def __init__(self, config: ClipSegMultiClassConfig):
super().__init__(config)
self.config = config
self.class_labels = config.class_labels
self.num_classes = config.num_classes
self.processor = CLIPSegProcessor.from_pretrained(config.model)
self.clipseg = CLIPSegForImageSegmentation.from_pretrained(config.model)
self.loss_fct = nn.CrossEntropyLoss()
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
**kwargs
) -> ClipSegMultiClassOutput:
if pixel_values is None or input_ids is None:
raise ValueError("Both `pixel_values` and `input_ids` must be provided.")
pixel_values = pixel_values.to(self.device)
input_ids = input_ids.to(self.device)
outputs = self.clipseg(pixel_values=pixel_values, input_ids=input_ids)
raw_logits = outputs.logits # shape: [B * C, H, W]
B = raw_logits.shape[0] // self.num_classes
C = self.num_classes
H, W = raw_logits.shape[-2:]
logits = raw_logits.view(B, C, H, W) # [B, C, H, W]
pred = torch.argmax(logits, dim=1) # [B, H, W]
loss = self.loss_fct(logits, labels.long()) if labels is not None else None
return ClipSegMultiClassOutput(
loss=loss,
logits=logits,
predictions=pred
)
@torch.no_grad()
def predict(self, images: Union[List, "PIL.Image.Image"]) -> torch.Tensor:
self.eval()
if isinstance(images, Image.Image):
images = [images]
inputs = self.processor(
images=[img for img in images for _ in self.class_labels],
text=self.class_labels * len(images),
return_tensors="pt",
padding=True,
truncation=True
).to(self.device)
output = self.forward(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"]
)
return output.predictions
def evaluate(self, dataloader: torch.utils.data.DataLoader) -> dict:
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import numpy as np
self.eval()
all_preds = []
all_targets = []
with torch.no_grad():
for batch in dataloader:
pixel_values = batch["pixel_values"].to(self.device) # [B * C, 3, H, W]
input_ids = batch["input_ids"].to(self.device) # [B * C, T]
labels = batch["labels"].to(self.device) # [B, H, W]
outputs = self.forward(pixel_values=pixel_values, input_ids=input_ids)
preds = outputs.predictions # [B, H, W]
for pred, label in zip(preds, labels):
pred = pred.cpu().flatten()
label = label.cpu().flatten()
mask = label != 0
pred = pred[mask]
label = label[mask]
all_preds.append(pred)
all_targets.append(label)
y_pred = torch.cat(all_preds).numpy()
y_true = torch.cat(all_targets).numpy()
return {
"accuracy": accuracy_score(y_true, y_pred),
"precision": precision_score(y_true, y_pred, average="macro", zero_division=0),
"recall": recall_score(y_true, y_pred, average="macro", zero_division=0),
"f1": f1_score(y_true, y_pred, average="macro", zero_division=0),
}