import gradio as gr import os import torch from transformers import ( AutoTokenizer, AutoModelForCausalLM, pipeline, AutoProcessor, MusicgenForConditionalGeneration ) import scipy.io.wavfile as wav # --------------------------------------------------------------------- # Load Llama 3 Model with Zero GPU # --------------------------------------------------------------------- def load_llama_pipeline_zero_gpu(model_id: str, token: str): try: if not torch.cuda.is_available(): raise RuntimeError("ZeroGPU is not properly initialized or GPU is unavailable.") tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token) model = AutoModelForCausalLM.from_pretrained( model_id, use_auth_token=token, torch_dtype=torch.float16, device_map="auto", # Use device map to offload computations trust_remote_code=True # Enables execution of remote code for Zero GPU ) return pipeline("text-generation", model=model, tokenizer=tokenizer) except Exception as e: return str(e) # --------------------------------------------------------------------- # Generate Radio Script # --------------------------------------------------------------------- def generate_script(user_input: str, pipeline_llama): try: system_prompt = ( "You are a top-tier radio imaging producer using Llama 3. " "Take the user's concept and craft a short, creative promo script." ) combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:" result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9) return result[0]['generated_text'].split("Refined script:")[-1].strip() except Exception as e: return f"Error generating script: {e}" # --------------------------------------------------------------------- # Load MusicGen Model # --------------------------------------------------------------------- def load_musicgen_model(): try: model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") processor = AutoProcessor.from_pretrained("facebook/musicgen-small") return model, processor except Exception as e: return None, str(e) # --------------------------------------------------------------------- # Generate Audio # --------------------------------------------------------------------- def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor): try: inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt") outputs = mg_model.generate(**inputs, max_new_tokens=audio_length) sr = mg_model.config.audio_encoder.sampling_rate audio_data = outputs[0, 0].cpu().numpy() normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16") output_file = "radio_jingle.wav" wav.write(output_file, rate=sr, data=normalized_audio) return sr, normalized_audio except Exception as e: return str(e) # --------------------------------------------------------------------- # Gradio Interface # --------------------------------------------------------------------- def radio_imaging_app(user_prompt, llama_model_id, hf_token, audio_length): # Load Llama 3 Pipeline with Zero GPU pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token) if isinstance(pipeline_llama, str): return pipeline_llama, None # Generate Script script = generate_script(user_prompt, pipeline_llama) # Load MusicGen mg_model, mg_processor = load_musicgen_model() if isinstance(mg_processor, str): return script, mg_processor # Generate Audio audio_data = generate_audio(script, audio_length, mg_model, mg_processor) if isinstance(audio_data, str): return script, audio_data return script, audio_data # --------------------------------------------------------------------- # Interface # --------------------------------------------------------------------- with gr.Blocks() as demo: gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)") with gr.Row(): user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show, fun and energetic.") llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B") hf_token = gr.Textbox(label="Hugging Face Token", type="password") audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512) generate_button = gr.Button("Generate Promo Script and Audio") script_output = gr.Textbox(label="Generated Script") audio_output = gr.Audio(label="Generated Audio", type="numpy") generate_button.click(radio_imaging_app, inputs=[user_prompt, llama_model_id, hf_token, audio_length], outputs=[script_output, audio_output]) # --------------------------------------------------------------------- # Launch App # --------------------------------------------------------------------- demo.launch()