Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,31 +8,19 @@ from diffusers import DiffusionPipeline
|
|
8 |
from transformers import pipeline
|
9 |
from pathlib import Path
|
10 |
|
11 |
-
# Load environment variables from .env file if needed
|
12 |
load_dotenv()
|
13 |
|
14 |
-
# If you have any Hugging Face tokens for private models (AudioLDM2 requires HF_TKN)
|
15 |
hf_token = os.getenv("HF_TKN")
|
16 |
|
17 |
-
# ------------------------------------------------
|
18 |
-
# 1) INITIALIZE FREE IMAGE CAPTIONING PIPELINE
|
19 |
-
# ------------------------------------------------
|
20 |
-
# Replace "nlpconnect/vit-gpt2-image-captioning" with any other free image captioning model you prefer.
|
21 |
captioning_pipeline = pipeline(
|
22 |
"image-to-text",
|
23 |
model="nlpconnect/vit-gpt2-image-captioning",
|
24 |
-
# If the model is private or requires auth, pass the token here: use_auth_token=hf_token,
|
25 |
)
|
26 |
|
27 |
-
# ------------------------------------------------
|
28 |
-
# 2) INITIALIZE AUDIO LDM-2 PIPELINE
|
29 |
-
# ------------------------------------------------
|
30 |
-
# AudioLDM2 is also from Hugging Face. If it’s a private model, pass your token via use_auth_token.
|
31 |
-
# If you’re using the public version, you may not need the token at all.
|
32 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
pipe = DiffusionPipeline.from_pretrained(
|
34 |
"cvssp/audioldm2",
|
35 |
-
use_auth_token=hf_token
|
36 |
)
|
37 |
pipe = pipe.to(device)
|
38 |
|
@@ -42,17 +30,14 @@ def analyze_image_with_free_model(image_file):
|
|
42 |
Returns: (caption_text, is_error_flag)
|
43 |
"""
|
44 |
try:
|
45 |
-
# Save uploaded image to a temporary file
|
46 |
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
47 |
temp_file.write(image_file)
|
48 |
temp_image_path = temp_file.name
|
49 |
|
50 |
-
# Run the image captioning pipeline
|
51 |
results = captioning_pipeline(temp_image_path)
|
52 |
if not results or not isinstance(results, list):
|
53 |
return "Error: Could not generate caption.", True
|
54 |
|
55 |
-
# Typically, pipeline returns a list of dicts with a "generated_text" key
|
56 |
caption = results[0].get("generated_text", "").strip()
|
57 |
if not caption:
|
58 |
return "No caption was generated.", True
|
@@ -68,7 +53,6 @@ def get_audioldm_from_caption(caption):
|
|
68 |
Returns the filename (path) of the generated .wav file.
|
69 |
"""
|
70 |
try:
|
71 |
-
# Generate audio from the caption
|
72 |
audio_output = pipe(
|
73 |
prompt=caption,
|
74 |
num_inference_steps=50,
|
@@ -76,7 +60,6 @@ def get_audioldm_from_caption(caption):
|
|
76 |
)
|
77 |
audio = audio_output.audios[0]
|
78 |
|
79 |
-
# Write the audio to a temporary .wav file
|
80 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
81 |
write(temp_wav.name, 16000, audio)
|
82 |
return temp_wav.name
|
@@ -85,9 +68,6 @@ def get_audioldm_from_caption(caption):
|
|
85 |
print(f"Error generating audio from caption: {e}")
|
86 |
return None
|
87 |
|
88 |
-
# ------------------------------------------------
|
89 |
-
# 3) GRADIO INTERFACE
|
90 |
-
# ------------------------------------------------
|
91 |
css = """
|
92 |
#col-container{
|
93 |
margin: 0 auto;
|
@@ -96,7 +76,6 @@ css = """
|
|
96 |
"""
|
97 |
|
98 |
with gr.Blocks(css=css) as demo:
|
99 |
-
# Main Title and App Description
|
100 |
with gr.Column(elem_id="col-container"):
|
101 |
gr.HTML("""
|
102 |
<h1 style="text-align: center;">
|
@@ -145,15 +124,13 @@ with gr.Blocks(css=css) as demo:
|
|
145 |
Enjoy exploring the auditory landscape of your images!
|
146 |
""")
|
147 |
|
148 |
-
# Function to update the caption display based on the uploaded image
|
149 |
def update_caption(image_file):
|
150 |
description, error_flag = analyze_image_with_free_model(image_file)
|
151 |
return description
|
152 |
|
153 |
-
# Function to generate sound from the description
|
154 |
def generate_sound(description):
|
155 |
if not description or description.startswith("Error"):
|
156 |
-
return None
|
157 |
audio_path = get_audioldm_from_caption(description)
|
158 |
return audio_path
|
159 |
|
|
|
8 |
from transformers import pipeline
|
9 |
from pathlib import Path
|
10 |
|
|
|
11 |
load_dotenv()
|
12 |
|
|
|
13 |
hf_token = os.getenv("HF_TKN")
|
14 |
|
|
|
|
|
|
|
|
|
15 |
captioning_pipeline = pipeline(
|
16 |
"image-to-text",
|
17 |
model="nlpconnect/vit-gpt2-image-captioning",
|
|
|
18 |
)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
20 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
21 |
pipe = DiffusionPipeline.from_pretrained(
|
22 |
"cvssp/audioldm2",
|
23 |
+
use_auth_token=hf_token
|
24 |
)
|
25 |
pipe = pipe.to(device)
|
26 |
|
|
|
30 |
Returns: (caption_text, is_error_flag)
|
31 |
"""
|
32 |
try:
|
|
|
33 |
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as temp_file:
|
34 |
temp_file.write(image_file)
|
35 |
temp_image_path = temp_file.name
|
36 |
|
|
|
37 |
results = captioning_pipeline(temp_image_path)
|
38 |
if not results or not isinstance(results, list):
|
39 |
return "Error: Could not generate caption.", True
|
40 |
|
|
|
41 |
caption = results[0].get("generated_text", "").strip()
|
42 |
if not caption:
|
43 |
return "No caption was generated.", True
|
|
|
53 |
Returns the filename (path) of the generated .wav file.
|
54 |
"""
|
55 |
try:
|
|
|
56 |
audio_output = pipe(
|
57 |
prompt=caption,
|
58 |
num_inference_steps=50,
|
|
|
60 |
)
|
61 |
audio = audio_output.audios[0]
|
62 |
|
|
|
63 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_wav:
|
64 |
write(temp_wav.name, 16000, audio)
|
65 |
return temp_wav.name
|
|
|
68 |
print(f"Error generating audio from caption: {e}")
|
69 |
return None
|
70 |
|
|
|
|
|
|
|
71 |
css = """
|
72 |
#col-container{
|
73 |
margin: 0 auto;
|
|
|
76 |
"""
|
77 |
|
78 |
with gr.Blocks(css=css) as demo:
|
|
|
79 |
with gr.Column(elem_id="col-container"):
|
80 |
gr.HTML("""
|
81 |
<h1 style="text-align: center;">
|
|
|
124 |
Enjoy exploring the auditory landscape of your images!
|
125 |
""")
|
126 |
|
|
|
127 |
def update_caption(image_file):
|
128 |
description, error_flag = analyze_image_with_free_model(image_file)
|
129 |
return description
|
130 |
|
|
|
131 |
def generate_sound(description):
|
132 |
if not description or description.startswith("Error"):
|
133 |
+
return None
|
134 |
audio_path = get_audioldm_from_caption(description)
|
135 |
return audio_path
|
136 |
|