Bils commited on
Commit
7eb998e
·
verified ·
1 Parent(s): 5b51bb7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -47
app.py CHANGED
@@ -1,19 +1,22 @@
1
- # Import necessary libraries
2
  import os
3
  import tempfile
4
  import gradio as gr
5
  from dotenv import load_dotenv
6
  import torch
7
  from scipy.io.wavfile import write
8
- from diffusers import DiffusionPipeline
9
  import google.generativeai as genai
10
  from pathlib import Path
11
 
 
 
 
 
12
 
13
  # Load environment variables from .env file
14
  load_dotenv()
15
 
16
- #Google Generative AI for Gemini
17
  genai.configure(api_key=os.getenv("API_KEY"))
18
 
19
  # Hugging Face token from environment variables
@@ -24,22 +27,26 @@ def analyze_image_with_gemini(image_file):
24
  Analyzes an uploaded image with Gemini and generates a descriptive caption.
25
  """
26
  try:
27
- # Save uploaded image to a temporary file
28
  temp_image_path = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg").name
29
  with open(temp_image_path, "wb") as temp_file:
30
  temp_file.write(image_file)
31
 
32
- # Prepare the image data and prompt for Gemini
33
  image_parts = [{"mime_type": "image/jpeg", "data": Path(temp_image_path).read_bytes()}]
34
  prompt_parts = ["Describe precisely the image in one sentence.\n", image_parts[0], "\n"]
35
  generation_config = {"temperature": 0.05, "top_p": 1, "top_k": 26, "max_output_tokens": 4096}
36
- safety_settings = [{"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
37
- {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
38
- {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
39
- {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}]
40
- model = genai.GenerativeModel(model_name="gemini-1.0-pro-vision-latest",
41
- generation_config=generation_config,
42
- safety_settings=safety_settings)
 
 
 
 
43
  response = model.generate_content(prompt_parts)
44
  return response.text.strip(), False # False indicates no error
45
  except Exception as e:
@@ -50,11 +57,11 @@ def get_audioldm_from_caption(caption):
50
  """
51
  Generates sound from a caption using the AudioLDM-2 model.
52
  """
53
- # Initialize the model
54
  pipe = DiffusionPipeline.from_pretrained("cvssp/audioldm2", use_auth_token=hf_token)
55
  pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
56
 
57
- # Generate audio from the caption
58
  audio_output = pipe(prompt=caption, num_inference_steps=50, guidance_scale=7.5)
59
  audio = audio_output.audios[0]
60
 
@@ -63,13 +70,12 @@ def get_audioldm_from_caption(caption):
63
 
64
  return temp_file.name
65
 
66
- # css
67
  css="""
68
  #col-container{
69
  margin: 0 auto;
70
  max-width: 800px;
71
- }
72
-
73
  """
74
 
75
  # Gradio interface setup
@@ -77,44 +83,46 @@ with gr.Blocks(css=css) as demo:
77
  # Main Title and App Description
78
  with gr.Column(elem_id="col-container"):
79
  gr.HTML("""
80
- <h1 style="text-align: center;">
81
- 🎶 Generate Sound Effects from Image
82
  </h1>
83
- <p style="text-align: center;">
84
- âš¡ Powered by <a href="https://bilsimaging.com" _blank >Bilsimaging</a>
85
  </p>
86
- """)
87
-
88
- gr.Markdown("""
89
- Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a descriptive caption and a corresponding sound effect. Whether you're exploring the sound of nature, urban environments, or anything in between, this app brings your images to auditory life.
90
-
91
- **💡 How it works:**
92
- 1. **Upload an image**: Choose an image that you'd like to analyze.
93
- 2. **Generate Description**: Click on 'Tap to Generate Description from the image' to get a textual description of your uploaded image.
94
- 3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a sound effect that matches the image context.
95
-
96
- Enjoy the journey from visual to auditory sensation with just a few clicks!
97
-
98
- For Example Demos sound effects generated , check out our [YouTube channel](https://www.youtube.com/playlist?list=PLwEbW4bdYBSC8exiJ9PfzufGND_14f--C)
99
- """)
100
-
101
- # Interface Components
102
  image_upload = gr.File(label="Upload Image", type="binary")
103
  generate_description_button = gr.Button("Tap to Generate a Description from your image")
104
- caption_display = gr.Textbox(label="Image Description", interactive=False) # Keep as read-only
105
  generate_sound_button = gr.Button("Generate Sound Effect")
106
  audio_output = gr.Audio(label="Generated Sound Effect")
107
- # extra footer
 
108
  gr.Markdown("""## 👥 How You Can Contribute
109
  We welcome contributions and suggestions for improvements. Your feedback is invaluable to the continuous enhancement of this application.
110
-
111
  For support, questions, or to contribute, please contact us at [[email protected]](mailto:[email protected]).
112
-
113
  Support our work and get involved by donating through [Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
114
- """)
115
  gr.Markdown("""## 📢 Stay Connected
116
- this app is a testament to the creative possibilities that emerge when technology meets art. Enjoy exploring the auditory landscape of your images!
117
- """)
 
118
  # Function to update the caption display based on the uploaded image
119
  def update_caption(image_file):
120
  description, _ = analyze_image_with_gemini(image_file)
@@ -137,7 +145,5 @@ with gr.Blocks(css=css) as demo:
137
  outputs=audio_output
138
  )
139
 
140
-
141
-
142
  # Launch the Gradio app
143
- demo.launch(debug=True, share=True)
 
 
1
  import os
2
  import tempfile
3
  import gradio as gr
4
  from dotenv import load_dotenv
5
  import torch
6
  from scipy.io.wavfile import write
7
+ from diffusers import DiffusionPipeline
8
  import google.generativeai as genai
9
  from pathlib import Path
10
 
11
+ # Check CUDA availability
12
+ print(f"Is CUDA available: {torch.cuda.is_available()}")
13
+ if torch.cuda.is_available():
14
+ print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
15
 
16
  # Load environment variables from .env file
17
  load_dotenv()
18
 
19
+ # Google Generative AI for Gemini
20
  genai.configure(api_key=os.getenv("API_KEY"))
21
 
22
  # Hugging Face token from environment variables
 
27
  Analyzes an uploaded image with Gemini and generates a descriptive caption.
28
  """
29
  try:
30
+ # Save uploaded image to a temporary file
31
  temp_image_path = tempfile.NamedTemporaryFile(delete=False, suffix=".jpg").name
32
  with open(temp_image_path, "wb") as temp_file:
33
  temp_file.write(image_file)
34
 
35
+ # Prepare the image data and prompt for Gemini
36
  image_parts = [{"mime_type": "image/jpeg", "data": Path(temp_image_path).read_bytes()}]
37
  prompt_parts = ["Describe precisely the image in one sentence.\n", image_parts[0], "\n"]
38
  generation_config = {"temperature": 0.05, "top_p": 1, "top_k": 26, "max_output_tokens": 4096}
39
+ safety_settings = [
40
+ {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
41
+ {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
42
+ {"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"},
43
+ {"category": "HARM_CATEGORY_DANGEROUS_CONTENT", "threshold": "BLOCK_MEDIUM_AND_ABOVE"}
44
+ ]
45
+ model = genai.GenerativeModel(
46
+ model_name="gemini-1.0-pro-vision-latest",
47
+ generation_config=generation_config,
48
+ safety_settings=safety_settings
49
+ )
50
  response = model.generate_content(prompt_parts)
51
  return response.text.strip(), False # False indicates no error
52
  except Exception as e:
 
57
  """
58
  Generates sound from a caption using the AudioLDM-2 model.
59
  """
60
+ # Initialize the model
61
  pipe = DiffusionPipeline.from_pretrained("cvssp/audioldm2", use_auth_token=hf_token)
62
  pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
63
 
64
+ # Generate audio from the caption
65
  audio_output = pipe(prompt=caption, num_inference_steps=50, guidance_scale=7.5)
66
  audio = audio_output.audios[0]
67
 
 
70
 
71
  return temp_file.name
72
 
73
+ # CSS
74
  css="""
75
  #col-container{
76
  margin: 0 auto;
77
  max-width: 800px;
78
+ }
 
79
  """
80
 
81
  # Gradio interface setup
 
83
  # Main Title and App Description
84
  with gr.Column(elem_id="col-container"):
85
  gr.HTML("""
86
+ <h1 style="text-align: center;">
87
+ 🎶 Generate Sound Effects from Image
88
  </h1>
89
+ <p style="text-align: center;">
90
+ âš¡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
91
  </p>
92
+ """)
93
+
94
+ gr.Markdown("""
95
+ Welcome to this unique sound effect generator! This tool allows you to upload an image and generate a descriptive caption and a corresponding sound effect. Whether you're exploring the sound of nature, urban environments, or anything in between, this app brings your images to auditory life.
96
+
97
+ **💡 How it works:**
98
+ 1. **Upload an image**: Choose an image that you'd like to analyze.
99
+ 2. **Generate Description**: Click on 'Tap to Generate Description from the image' to get a textual description of your uploaded image.
100
+ 3. **Generate Sound Effect**: Based on the image description, click on 'Generate Sound Effect' to create a sound effect that matches the image context.
101
+
102
+ Enjoy the journey from visual to auditory sensation with just a few clicks!
103
+
104
+ For example demos of sound effects generated, check out our [YouTube channel](https://www.youtube.com/playlist?list=PLwEbW4bdYBSC8exiJ9PfzufGND_14f--C).
105
+ """)
106
+
107
+ # Interface Components
108
  image_upload = gr.File(label="Upload Image", type="binary")
109
  generate_description_button = gr.Button("Tap to Generate a Description from your image")
110
+ caption_display = gr.Textbox(label="Image Description", interactive=False) # Read-only
111
  generate_sound_button = gr.Button("Generate Sound Effect")
112
  audio_output = gr.Audio(label="Generated Sound Effect")
113
+
114
+ # Extra footer
115
  gr.Markdown("""## 👥 How You Can Contribute
116
  We welcome contributions and suggestions for improvements. Your feedback is invaluable to the continuous enhancement of this application.
117
+
118
  For support, questions, or to contribute, please contact us at [[email protected]](mailto:[email protected]).
119
+
120
  Support our work and get involved by donating through [Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
121
+ """)
122
  gr.Markdown("""## 📢 Stay Connected
123
+ This app is a testament to the creative possibilities that emerge when technology meets art. Enjoy exploring the auditory landscape of your images!
124
+ """)
125
+
126
  # Function to update the caption display based on the uploaded image
127
  def update_caption(image_file):
128
  description, _ = analyze_image_with_gemini(image_file)
 
145
  outputs=audio_output
146
  )
147
 
 
 
148
  # Launch the Gradio app
149
+ demo.launch(debug=True, share=True)