File size: 7,474 Bytes
698d4cd
2019ee0
213e5d3
698d4cd
 
81b2481
213e5d3
 
 
2f15cbe
 
213e5d3
2f15cbe
213e5d3
698d4cd
213e5d3
2f15cbe
 
 
24da5c3
2f15cbe
9c06b1a
2f15cbe
 
 
 
 
 
 
 
 
 
 
 
9c06b1a
2f15cbe
9c06b1a
2f15cbe
 
 
 
 
 
 
 
81b2481
2f15cbe
81b2481
698d4cd
2f15cbe
 
24da5c3
2f15cbe
 
698d4cd
 
2f15cbe
 
 
 
4d9e689
2f15cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d9e689
2f15cbe
698d4cd
4d9e689
172038e
2f15cbe
 
 
 
172038e
 
698d4cd
 
2f15cbe
698d4cd
2f15cbe
 
 
 
a4f881b
e18ae6e
2f15cbe
 
 
 
 
 
 
698d4cd
2f15cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698d4cd
2f15cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698d4cd
8a09658
2f15cbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e18ae6e
a4f881b
2f15cbe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import spaces
import os
import tempfile
import gradio as gr
from dotenv import load_dotenv
import torch
from scipy.io.wavfile import write
from diffusers import DiffusionPipeline
from transformers import pipeline
from pydub import AudioSegment
import numpy as np

# Load environment variables
load_dotenv()
hf_token = os.getenv("HF_TKN")

# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if device == "cuda" else torch.float32

# Initialize models with automatic device detection
@spaces.GPU(duration=120)
def load_models():
    global captioning_pipeline, pipe
    captioning_pipeline = pipeline(
        "image-to-text",
        model="nlpconnect/vit-gpt2-image-captioning",
        device=0 if torch.cuda.is_available() else -1
    )
    pipe = DiffusionPipeline.from_pretrained(
        "cvssp/audioldm2",
        use_auth_token=hf_token,
        torch_dtype=torch_dtype
    ).to(device)

load_models()

@spaces.GPU(duration=60)
def analyze_image(image_file):
    """Generate caption from image with error handling"""
    try:
        results = captioning_pipeline(image_file)
        if results and isinstance(results, list):
            return results[0].get("generated_text", "").strip()
        return "Could not generate caption"
    except Exception as e:
        return f"Error: {str(e)}"

@spaces.GPU(duration=120)
def generate_audio(prompt):
    """Generate audio from text prompt"""
    try:
        return pipe(
            prompt=prompt,
            num_inference_steps=50,
            guidance_scale=7.5
        ).audios[0]
    except Exception as e:
        print(f"Audio generation error: {str(e)}")
        return None

def blend_audios(audio_list):
    """Mix multiple audio arrays into one"""
    try:
        valid_audios = [arr for arr in audio_list if arr is not None]
        if not valid_audios:
            return None
            
        max_length = max(arr.shape[0] for arr in valid_audios)
        mixed = np.zeros(max_length)
        
        for arr in valid_audios:
            if arr.shape[0] < max_length:
                padded = np.pad(arr, (0, max_length - arr.shape[0]))
            else:
                padded = arr[:max_length]
            mixed += padded
        
        mixed = mixed / np.max(np.abs(mixed))
        _, tmp_path = tempfile.mkstemp(suffix=".wav")
        write(tmp_path, 16000, mixed)
        return tmp_path
    except Exception as e:
        print(f"Blending error: {str(e)}")
        return None

css = """
#col-container { max-width: 800px; margin: 0 auto; }
.toggle-row { margin: 1rem 0; }
.prompt-box { margin-bottom: 0.5rem; }
.danger { color: #ff4444; font-weight: bold; }
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        # Header Section
        gr.HTML("""
        <h1 style="text-align: center;">🎶 Generate Sound Effects from Image or Text</h1>
        <p style="text-align: center;">
            ⚡ Powered by <a href="https://bilsimaging.com" target="_blank">Bilsimaging</a>
        </p>
        """)

        # Input Mode Toggle
        input_mode = gr.Radio(
            choices=["Image Input", "Text Input"],
            value="Image Input",
            label="Select Input Mode",
            elem_classes="toggle-row"
        )

        # Image Input Section
        with gr.Column(visible=True) as image_col:
            image_upload = gr.Image(type="filepath", label="Upload Image")
            generate_desc_btn = gr.Button("Generate Description from Image", variant="primary")
            caption_display = gr.Textbox(label="Generated Description", interactive=False)

        # Text Input Section
        with gr.Column(visible=False) as text_col:
            with gr.Row():
                prompt1 = gr.Textbox(label="Sound Prompt 1", lines=2, placeholder="Enter sound description...")
                prompt2 = gr.Textbox(label="Sound Prompt 2", lines=2, placeholder="Enter sound description...")
            additional_prompts = gr.Column()
            add_prompt_btn = gr.Button("➕ Add Another Prompt", variant="secondary")
            gr.Markdown("<div class='danger'>Max 5 prompts for stability</div>")

        # Generation Controls
        generate_sound_btn = gr.Button("Generate Sound Effect", variant="primary")
        audio_output = gr.Audio(label="Generated Sound Effect", interactive=False)

        # Documentation Section
        gr.Markdown("""
        ## 👥 How You Can Contribute
        We welcome contributions! Contact us at [[email protected]](mailto:[email protected]).
        Support us on [Ko-fi](https://ko-fi.com/bilsimaging) - Bilel Aroua
        """)

        # Visitor Badge
        gr.HTML("""
        <div style="text-align: center;">
            <a href="https://visitorbadge.io/status?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image">
                <img src="https://api.visitorbadge.io/api/visitors?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image&countColor=%23263759"/>
            </a>
        </div>
        """)

    # Input Mode Toggle Handler
    input_mode.change(
        lambda mode: (gr.update(visible=mode == "Image Input"), gr.update(visible=mode == "Text Input")),
        inputs=input_mode,
        outputs=[image_col, text_col],
        concurrency_limit=1
    )

    # Image Description Generation
    generate_desc_btn.click(
        analyze_image,
        inputs=image_upload,
        outputs=caption_display,
        concurrency_limit=2
    )

    # Dynamic Prompt Addition
    def add_prompt(current_count):
        if current_count >= 5:
            return current_count, gr.update()
        new_count = current_count + 1
        new_prompt = gr.Textbox(
            label=f"Sound Prompt {new_count}",
            lines=2,
            visible=True,
            placeholder="Enter sound description..."
        )
        return new_count, new_prompt

    prompt_count = gr.State(2)
    add_prompt_btn.click(
        add_prompt,
        inputs=prompt_count,
        outputs=[prompt_count, additional_prompts],
        concurrency_limit=1
    )

    # Sound Generation Handler
    def process_inputs(mode, image_file, caption, *prompts):
        try:
            if mode == "Image Input":
                if not image_file:
                    raise gr.Error("Please upload an image")
                caption = analyze_image(image_file)
                prompts = [caption]
            else:
                prompts = [p.strip() for p in prompts if p.strip()]
                if not prompts:
                    raise gr.Error("Please enter at least one valid prompt")

            # Generate individual audio tracks
            audio_tracks = []
            for prompt in prompts:
                if not prompt:
                    continue
                audio = generate_audio(prompt)
                if audio is not None:
                    audio_tracks.append(audio)

            # Blend audio tracks
            if not audio_tracks:
                return None
            return blend_audios(audio_tracks)

        except Exception as e:
            raise gr.Error(f"Processing error: {str(e)}")

    generate_sound_btn.click(
        process_inputs,
        inputs=[input_mode, image_upload, caption_display, prompt1, prompt2],
        outputs=audio_output,
        concurrency_limit=2
    )

if __name__ == "__main__":
    demo.launch(max_threads=4)