Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,284 Bytes
81b2481 2019ee0 81b2481 2019ee0 24da5c3 2019ee0 24da5c3 2019ee0 81b2481 2019ee0 81b2481 2019ee0 81b2481 2019ee0 24da5c3 2019ee0 24da5c3 2019ee0 24da5c3 2019ee0 3229fa2 2019ee0 81b2481 2019ee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import gradio as gr
import os
import torch
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration
)
import scipy.io.wavfile as wav
# ---------------------------------------------------------------------
# Load Llama 3 Model with Zero GPU
# ---------------------------------------------------------------------
def load_llama_pipeline_zero_gpu(model_id: str, token: str):
try:
if not torch.cuda.is_available():
raise RuntimeError("ZeroGPU is not properly initialized or GPU is unavailable.")
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto", # Use device map to offload computations
trust_remote_code=True # Enables execution of remote code for Zero GPU
)
return pipeline("text-generation", model=model, tokenizer=tokenizer)
except Exception as e:
return str(e)
# ---------------------------------------------------------------------
# Generate Radio Script
# ---------------------------------------------------------------------
def generate_script(user_input: str, pipeline_llama):
try:
system_prompt = (
"You are a top-tier radio imaging producer using Llama 3. "
"Take the user's concept and craft a short, creative promo script."
)
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
return result[0]['generated_text'].split("Refined script:")[-1].strip()
except Exception as e:
return f"Error generating script: {e}"
# ---------------------------------------------------------------------
# Load MusicGen Model
# ---------------------------------------------------------------------
def load_musicgen_model():
try:
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
return model, processor
except Exception as e:
return None, str(e)
# ---------------------------------------------------------------------
# Generate Audio
# ---------------------------------------------------------------------
def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
try:
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
sr = mg_model.config.audio_encoder.sampling_rate
audio_data = outputs[0, 0].cpu().numpy()
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
output_file = "radio_jingle.wav"
wav.write(output_file, rate=sr, data=normalized_audio)
return sr, normalized_audio
except Exception as e:
return str(e)
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
def radio_imaging_app(user_prompt, llama_model_id, hf_token, audio_length):
# Load Llama 3 Pipeline with Zero GPU
pipeline_llama = load_llama_pipeline_zero_gpu(llama_model_id, hf_token)
if isinstance(pipeline_llama, str):
return pipeline_llama, None
# Generate Script
script = generate_script(user_prompt, pipeline_llama)
# Load MusicGen
mg_model, mg_processor = load_musicgen_model()
if isinstance(mg_processor, str):
return script, mg_processor
# Generate Audio
audio_data = generate_audio(script, audio_length, mg_model, mg_processor)
if isinstance(audio_data, str):
return script, audio_data
return script, audio_data
# ---------------------------------------------------------------------
# Interface
# ---------------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen (Zero GPU)")
with gr.Row():
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show, fun and energetic.")
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B")
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
generate_button = gr.Button("Generate Promo Script and Audio")
script_output = gr.Textbox(label="Generated Script")
audio_output = gr.Audio(label="Generated Audio", type="numpy")
generate_button.click(radio_imaging_app,
inputs=[user_prompt, llama_model_id, hf_token, audio_length],
outputs=[script_output, audio_output])
# ---------------------------------------------------------------------
# Launch App
# ---------------------------------------------------------------------
demo.launch()
|