Bikas0's picture
contract verification
1705208
raw
history blame
7.73 kB
import streamlit as st
import os
import openai
import json
import pandas as pd
from docx import Document
from concurrent.futures import ThreadPoolExecutor, as_completed
from dotenv import load_dotenv
import time
# Load the OpenAI API key from environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
openai.api_key = api_key
# Streamlit app layout
st.set_page_config(layout="wide")
# Add custom CSS for center alignment
st.markdown("""
<style>
.centered-title {
text-align: center;
font-size: 2.5em;
margin-top: 0;
}
</style>
""", unsafe_allow_html=True)
def extract_text_from_docx(docx_path):
doc = Document(docx_path)
return "\n".join([para.text for para in doc.paragraphs])
def extract_terms_from_contract(contract_text):
prompt = (
"You are an AI tasked with analyzing a contract and extracting key terms and constraints. The contract contains "
"various sections and subsections with terms related to budget constraints, types of allowable work, timelines, "
"penalties, responsibilities, and other conditions for work execution. Your job is to extract these key terms and "
"structure them in a clear JSON format, reflecting the hierarchy of sections and subsections. "
"Ensure to capture all important constraints and conditions specified in the contract text. If a section or subsection "
"contains multiple terms, list them all.\n\n"
"Contract text:\n"
f"{contract_text}\n\n"
"Provide the extracted terms in JSON format."
)
retries = 2
wait_time = 1
for i in range(retries):
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an AI specialized in extracting structured data from text documents."},
{"role": "user", "content": prompt},
],
max_tokens=4096,
n=1,
stop=None,
temperature=0.1,
)
return response.choices[0].message["content"]
except openai.error.RateLimitError:
if i < retries - 1:
st.warning(f"Rate limit exceeded. Retrying in {wait_time} seconds...")
time.sleep(wait_time)
wait_time *= 2 # Exponential backoff
else:
st.error("Rate limit exceeded. Please try again later.")
return None
def analyze_task_compliance(task_description, cost_estimate, contract_terms):
prompt = (
"You are an AI tasked with analyzing a task description and its associated cost estimate for compliance with contract conditions. "
"Below are the key terms and constraints extracted from the contract, followed by a task description and its cost estimate. "
"Your job is to analyze the task description and specify if it violates any conditions from the contract. "
"If there are violations, list the reasons for each violation.\n\n"
f"Contract terms:\n{json.dumps(contract_terms, indent=4)}\n\n"
f"Task description:\n{task_description}\n"
f"Cost estimate:\n{cost_estimate}\n\n"
"Provide the compliance analysis in a clear JSON format."
)
retries = 5
wait_time = 1
for i in range(retries):
try:
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an AI specialized in analyzing text for compliance with specified conditions."},
{"role": "user", "content": prompt},
],
max_tokens=4096,
n=1,
stop=None,
temperature=0.1,
stream=True,
)
compliance_analysis = ""
for chunk in response:
chunk_text = chunk['choices'][0]['delta'].get('content', '')
compliance_analysis += chunk_text
st.write(chunk_text)
st.json(chunk_text)
return json.loads(compliance_analysis)
except openai.error.RateLimitError:
if i < retries - 1:
st.warning(f"Rate limit exceeded. Retrying in {wait_time} seconds...")
time.sleep(wait_time)
wait_time *= 2 # Exponential backoff
else:
st.error("Rate limit exceeded. Please try again later.")
return None
def main():
st.markdown("<h1 class='centered-title'>Contract Compliance Analyzer</h1>", unsafe_allow_html=True)
# File upload buttons one after another
st.sidebar.file_uploader("Upload Contract Document (DOCX)", type="docx", key="docx_file")
st.sidebar.file_uploader("Upload Task Descriptions (XLSX or CSV)", type=["xlsx", "csv"], key="data_file")
submit_button = st.sidebar.button("Submit")
docx_file = st.session_state.get("docx_file")
data_file = st.session_state.get("data_file")
if submit_button and docx_file and data_file:
# Clear previous information
st.session_state.clear()
# Extract contract text and terms
contract_text = extract_text_from_docx(docx_file)
extracted_terms_json = extract_terms_from_contract(contract_text)
if extracted_terms_json is None:
return
try:
contract_terms = json.loads(extracted_terms_json)
except json.JSONDecodeError as e:
st.error(f"JSON decoding error: {e}")
return
# Read task descriptions and cost estimates from XLSX or CSV
if data_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
tasks_df = pd.read_excel(data_file)
else:
tasks_df = pd.read_csv(data_file)
compliance_results = []
futures = []
# Use ThreadPoolExecutor to analyze tasks concurrently
with ThreadPoolExecutor(max_workers=10) as executor: # Adjust max_workers as needed
for _, row in tasks_df.iterrows():
task_description = row['Task Description']
cost_estimate = row['Amount']
futures.append(executor.submit(analyze_task_compliance, task_description, cost_estimate, contract_terms))
for future in as_completed(futures):
try:
result = future.result()
if result is not None:
compliance_results.append(result)
except Exception as e:
st.error(f"An error occurred: {e}")
col1, col2 = st.columns(2)
with col1:
st.write("Extracted Contract Terms:")
st.json(contract_terms)
# Download button for contract terms
st.download_button(
label="Download Contract Terms",
data=json.dumps(contract_terms, indent=4),
file_name="contract_terms.json",
mime="application/json"
)
with col2:
st.write("Compliance Results:")
st.json(compliance_results)
# Download button for compliance results
compliance_results_json = json.dumps(compliance_results, indent=4)
st.download_button(
label="Download Compliance Results",
data=compliance_results_json,
file_name="compliance_results.json",
mime="application/json"
)
if __name__ == "__main__":
main()