File size: 5,669 Bytes
5fc6a9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import streamlit as st
import os
import openai
import json
import pandas as pd
from docx import Document
from concurrent.futures import ThreadPoolExecutor, as_completed
from dotenv import load_dotenv
# Load the OpenAI API key from environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
openai.api_key = api_key
def extract_text_from_docx(docx_path):
doc = Document(docx_path)
return "\n".join([para.text for para in doc.paragraphs])
def extract_terms_from_contract(contract_text):
prompt = (
"You are an AI tasked with analyzing a contract and extracting key terms and constraints. The contract contains "
"various sections and subsections with terms related to budget constraints, types of allowable work, timelines, "
"penalties, responsibilities, and other conditions for work execution. Your job is to extract these key terms and "
"structure them in a clear JSON format, reflecting the hierarchy of sections and subsections. "
"Ensure to capture all important constraints and conditions specified in the contract text. If a section or subsection "
"contains multiple terms, list them all.\n\n"
"Contract text:\n"
f"{contract_text}\n\n"
"Provide the extracted terms in JSON format."
)
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an AI specialized in extracting structured data from text documents."},
{"role": "user", "content": prompt},
],
max_tokens=4096,
n=1,
stop=None,
temperature=0.1,
)
return response.choices[0].message["content"]
def analyze_task_compliance(task_description, cost_estimate, contract_terms):
prompt = (
"You are an AI tasked with analyzing a task description and its associated cost estimate for compliance with contract conditions. "
"Below are the key terms and constraints extracted from the contract, followed by a task description and its cost estimate. "
"Your job is to analyze the task description and specify if it violates any conditions from the contract. "
"If there are violations, list the reasons for each violation.\n\n"
f"Contract terms:\n{json.dumps(contract_terms, indent=4)}\n\n"
f"Task description:\n{task_description}\n"
f"Cost estimate:\n{cost_estimate}\n\n"
"Provide the compliance analysis in a clear JSON format."
)
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[
{"role": "system", "content": "You are an AI specialized in analyzing text for compliance with specified conditions."},
{"role": "user", "content": prompt},
],
max_tokens=4096,
n=1,
stop=None,
temperature=0.1,
)
# Parse the response to extract structured explanations
response_content = response.choices[0].message["content"]
compliance_analysis = json.loads(response_content)
return compliance_analysis
def main():
st.title("Contract Compliance Analyzer")
# File upload buttons in the same row
col1, col2 = st.columns(2)
with col1:
docx_file = st.file_uploader("Upload Contract Document (DOCX)", type="docx")
with col2:
xlsx_file = st.file_uploader("Upload Task Descriptions (XLSX)", type="xlsx")
if docx_file and xlsx_file:
# Extract contract text and terms
contract_text = extract_text_from_docx(docx_file)
extracted_terms_json = extract_terms_from_contract(contract_text)
try:
contract_terms = json.loads(extracted_terms_json)
except json.JSONDecodeError as e:
st.error(f"JSON decoding error: {e}")
return
# Read task descriptions and cost estimates from XLSX
tasks_df = pd.read_excel(xlsx_file)
compliance_results = []
futures = []
# Use ThreadPoolExecutor to analyze tasks concurrently
with ThreadPoolExecutor(max_workers=10) as executor: # Adjust max_workers as needed
for _, row in tasks_df.iterrows():
task_description = row['Task Description']
cost_estimate = row['Amount']
futures.append(executor.submit(analyze_task_compliance, task_description, cost_estimate, contract_terms))
for future in as_completed(futures):
try:
result = future.result()
compliance_results.append(result)
except Exception as e:
st.error(f"An error occurred: {e}")
col1, col2 = st.columns(2)
with col1:
st.write("Extracted Contract Terms:")
st.json(contract_terms)
# Download button for contract terms
st.download_button(
label="Download Contract Terms",
data=json.dumps(contract_terms, indent=4),
file_name="contract_terms.json",
mime="application/json"
)
with col2:
st.write("Compliance Results:")
st.json(compliance_results)
# Download button for compliance results
compliance_results_json = json.dumps(compliance_results, indent=4)
st.download_button(
label="Download Compliance Results",
data=compliance_results_json,
file_name="compliance_results.json",
mime="application/json"
)
if __name__ == "__main__":
main()
|