Paraphrase / app.py
Simon Salmon
Update app.py
41d0dc8
raw
history blame
1.45 kB
import torch
from transformers import T5ForConditionalGeneration,T5Tokenizer, AutoTokenizer, AutoModelForSeq2SeqLM
import streamlit as st
model_name = st.text_input("Pick a Model", "seduerr/t5-pawraphrase")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def translate_to_english(model, tokenizer, text):
translated_text = []
text = "paraphrase: " + text + " </s>"
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
beam_outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
do_sample=True,
max_length=256,
top_k=120,
top_p=0.98,
early_stopping=True,
num_return_sequences=10
)
for beam_output in beam_outputs:
sent = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
print(sent)
translated_text.append(sent)
return translated_text
st.title("Auto Translate (To English)")
text = st.text_input("Okay")
st.text("What you wrote: ")
st.write(text)
st.text("English Translation: ")
if text:
translated_text = translate_to_english(model, tokenizer, text)
st.write(translated_text if translated_text else "No translation found")