Spaces:
Runtime error
Runtime error
File size: 2,358 Bytes
5097da2 1e7f9fe 5097da2 397c96d 5097da2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
import numpy as np
import pandas as pd
import os
import torch
import torch.nn as nn
from transformers import ElectraModel, AutoConfig, GPT2LMHeadModel
from transformers.activations import get_activation
from transformers import AutoTokenizer
st.title('Informal to Formal')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
st.text('''How To Make Prompt:
informal english: space is huge and needs to be explored.
Translated into the Style of Abraham Lincoln: space awaits traversal, a new world whose boundaries are endless.
Translated into the Style of Abraham Lincoln: space is a boundless expanse, a vast virgin domain awaiting exploration.
informal english: i am very ready to do that just that.
Translated into the Style of Abraham Lincoln: you can assure yourself of my readiness to work toward this end.
Translated into the Style of Abraham Lincoln: please be assured that i am most ready to undertake this laborious task.
informal english: meteors are much harder to see, because they are only there for a fraction of a second.
Translated into the Style of Abraham Lincoln: meteors are not readily detectable, lasting for mere fractions of a second.
informal english:''')
st.text('''To See Other Prompts You Can Use, Check: https://huggingface.co/BigSalmon/MrLincoln10''')
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelWithLMHead.from_pretrained("BigSalmon/MrLincoln5")
with st.form(key='my_form'):
prompt = st.text_area(label='Enter sentence')
submit_button = st.form_submit_button(label='Submit')
if submit_button:
with torch.no_grad():
text = tokenizer.encode(prompt)
myinput, past_key_values = torch.tensor([text]), None
myinput = myinput
myinput= myinput.to(device)
logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
logits = logits[0,-1]
probabilities = torch.nn.functional.softmax(logits)
best_logits, best_indices = logits.topk(60)
best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
text.append(best_indices[0].item())
best_probabilities = probabilities[best_indices].tolist()
words = []
st.write(best_words) |