File size: 9,401 Bytes
068768a
12b2310
068768a
2c25e3b
12b2310
1a8295f
068768a
 
12b2310
 
 
2c25e3b
12b2310
 
 
 
 
2c25e3b
12b2310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba87784
 
d54493e
 
 
 
12b2310
 
 
068768a
12b2310
2c25e3b
12b2310
2c25e3b
12b2310
 
 
 
 
2c25e3b
12b2310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c25e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12b2310
 
2c25e3b
12b2310
 
2c25e3b
12b2310
2c25e3b
 
12b2310
2c25e3b
12b2310
2c25e3b
 
12b2310
 
2c25e3b
12b2310
 
2c25e3b
 
12b2310
 
2c25e3b
 
 
12b2310
 
 
 
 
 
 
 
 
 
 
068768a
12b2310
068768a
12b2310
 
 
 
 
 
 
 
 
068768a
12b2310
 
 
068768a
12b2310
 
 
 
068768a
 
 
 
12b2310
 
2c25e3b
 
12b2310
 
2c25e3b
12b2310
 
 
 
 
 
 
 
 
 
 
e97e752
12b2310
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
import torch

first = """informal english: corn fields are all across illinois, visible once you leave chicago.\nTranslated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.\n\ninformal english: """

@st.cache(allow_output_mutation=True)
def get_model():
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln2")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln21")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln40")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln41")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln49")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2InformalToFormalLincoln42")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/Points3")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo1.3BPointsLincolnFormalInformal")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln7")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnConciseWordy")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln2")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln3")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln4")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln50")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints2")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPT2Neo1.3BPoints3")
    #model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln63Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln68Paraphrase")
    #model2 = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln63Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln63Paraphrase")
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln73Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln73Paraphrase")
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln76Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln76Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln78Paraphrase")
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln78Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase")
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln80Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln82Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln85Paraphrase")
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln85Paraphrase")
    #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln88Paraphrase")
    #tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln88Paraphrase")
    model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln90Paraphrase")
    tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln90Paraphrase")
    tokenizer2 = AutoTokenizer.from_pretrained("gpt2")
    model2 = AutoModelForCausalLM.from_pretrained("gpt2")
    return model, model2, tokenizer, tokenizer2
    
model, model2, tokenizer, tokenizer2 = get_model()

st.text('''For Prompt Templates: https://huggingface.co/BigSalmon/InformalToFormalLincoln82Paraphrase''')

temp = st.sidebar.slider("Temperature", 0.7, 1.5)
number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 50)
lengths = st.sidebar.slider("Length", 3, 500)
bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ")
logs_outputs = st.sidebar.slider("Logit Outputs", 50, 300)

def run_generate(text, bad_words):
  yo = []
  input_ids = tokenizer.encode(text, return_tensors='pt')
  res = len(tokenizer.encode(text))
  bad_words = bad_words.split()
  bad_word_ids = []
  for bad_word in bad_words: 
    bad_word = " " + bad_word
    ids = tokenizer(bad_word).input_ids
    bad_word_ids.append(ids)
  sample_outputs = model.generate(
    input_ids,
    do_sample=True, 
    max_length= res + lengths, 
    min_length = res + lengths, 
    top_k=50,
    temperature=temp,
    num_return_sequences=number_of_outputs,
    bad_words_ids=bad_word_ids
  )
  for i in range(number_of_outputs):
    e = tokenizer.decode(sample_outputs[i])
    e = e.replace(text, "")
    yo.append(e)
  return yo
  
def BestProbs5(prompt):
  prompt = prompt.strip()
  text = tokenizer.encode(prompt)
  myinput, past_key_values = torch.tensor([text]), None
  myinput = myinput
  logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
  logits = logits[0,-1]
  probabilities = torch.nn.functional.softmax(logits)
  best_logits, best_indices = logits.topk(number_of_outputs)
  best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
  for i in best_words[0:number_of_outputs]:
    #print(i)
    print("\n")
    g = (prompt + i)
    st.write(g)
    l = run_generate(g, "hey")
    st.write(l)
  
def run_generate2(text, bad_words):
  yo = []
  input_ids = tokenizer2.encode(text, return_tensors='pt')
  res = len(tokenizer2.encode(text))
  bad_words = bad_words.split()
  bad_word_ids = []
  for bad_word in bad_words: 
    bad_word = " " + bad_word
    ids = tokenizer2(bad_word).input_ids
    bad_word_ids.append(ids)
  sample_outputs = model2.generate(
    input_ids,
    do_sample=True, 
    max_length= res + lengths, 
    min_length = res + lengths, 
    top_k=50,
    temperature=temp,
    num_return_sequences=number_of_outputs,
    bad_words_ids=bad_word_ids
  )
  for i in range(number_of_outputs):
    e = tokenizer2.decode(sample_outputs[i])
    e = e.replace(text, "")
    yo.append(e)
  return yo
  
def prefix_format(sentence):
  words = sentence.split()
  if "[MASK]" in sentence:
    words2 = words.index("[MASK]")
    #print(words2)
    output = ("<Prefix> " + ' '.join(words[:words2]) + " <Prefix> " + "<Suffix> " + ' '.join(words[words2+1:]) + " <Suffix>" + " <Middle>")
    st.write(output)
  else:
    st.write("Add [MASK] to sentence")
 
with st.form(key='my_form'):
    text = st.text_area(label='Enter sentence', value=first)
    submit_button = st.form_submit_button(label='Submit')
    submit_button2 = st.form_submit_button(label='Submit Log Probs')
    
    submit_button3 = st.form_submit_button(label='Submit Other Model')
    submit_button4 = st.form_submit_button(label='Submit Log Probs Other Model')
    
    submit_button5 = st.form_submit_button(label='Most Prob')
    
    submit_button6 = st.form_submit_button(label='Turn Sentence with [MASK] into <Prefix> Format')
    
    if submit_button:
      translated_text = run_generate(text, bad_words)
      st.write(translated_text if translated_text else "No translation found")
    if submit_button2:
      with torch.no_grad():
        text2 = str(text)
        print(text2)
        text3 = tokenizer.encode(text2)
        myinput, past_key_values = torch.tensor([text3]), None
        myinput = myinput
        logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
        logits = logits[0,-1]
        probabilities = torch.nn.functional.softmax(logits)
        best_logits, best_indices = logits.topk(logs_outputs)
        best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]      
        st.write(best_words)
    if submit_button3:
      translated_text = run_generate2(text, bad_words)
      st.write(translated_text if translated_text else "No translation found")
    if submit_button4:
      text2 = str(text)
      print(text2)
      text3 = tokenizer2.encode(text2)
      myinput, past_key_values = torch.tensor([text3]), None
      myinput = myinput
      logits, past_key_values = model2(myinput, past_key_values = past_key_values, return_dict=False)
      logits = logits[0,-1]
      probabilities = torch.nn.functional.softmax(logits)
      best_logits, best_indices = logits.topk(logs_outputs)
      best_words = [tokenizer2.decode([idx.item()]) for idx in best_indices]      
      st.write(best_words)
    if submit_button5:
      BestProbs5(text)
    if submit_button6:
      text2 = str(text)
      prefix_format(text2)