BidhanAcharya commited on
Commit
9ff433d
·
verified ·
1 Parent(s): 1f77e35

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from unsloth import FastLanguageModel
3
+ from transformers import TextStreamer
4
+ import torch
5
+
6
+ # Load the model and tokenizer
7
+ model_name = "BidhanAcharya/FineTunedQWENoncoding" # Replace with your actual model path
8
+ max_seq_length = 512 # Example, adjust according to your model
9
+ dtype = torch.float16 # Adjust if necessary (use torch.float32 for CPU)
10
+ load_in_4bit = True # If needed, set to False if not using 4-bit precision
11
+
12
+ # Load the model and tokenizer with the FastLanguageModel method
13
+ model, tokenizer = FastLanguageModel.from_pretrained(
14
+ model_name=model_name,
15
+ max_seq_length=max_seq_length,
16
+ dtype=dtype,
17
+ load_in_4bit=load_in_4bit
18
+ )
19
+
20
+ # Set the model to inference mode
21
+ FastLanguageModel.for_inference(model)
22
+
23
+ # Define the Alpaca prompt format
24
+ alpaca_prompt = "### Instruction:\n{}\n\n### Input:\n{}\n\n### Response:\n{}"
25
+
26
+ # Gradio function for performing inference
27
+ def generate_response(instruction, input_data):
28
+ # Handle case where input data is empty
29
+ if input_data.strip() == "":
30
+ input_data = "No additional input provided."
31
+
32
+ # Format the prompt using the instruction and input data
33
+ inputs = tokenizer(
34
+ [
35
+ alpaca_prompt.format(
36
+ instruction, # user-provided instruction
37
+ input_data, # optional user input data
38
+ "" # output (leave blank for generation)
39
+ )
40
+ ],
41
+ return_tensors="pt"
42
+ )
43
+
44
+ # Move input tensors to the correct device (GPU/CPU)
45
+ device = "cuda" if torch.cuda.is_available() else "cpu"
46
+ inputs = inputs.to(device)
47
+
48
+ # Generate tokens with the model
49
+ generated_tokens = model.generate(**inputs, max_new_tokens=500)
50
+
51
+ # Decode the generated tokens into text
52
+ generated_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
53
+
54
+ return generated_text
55
+
56
+ # Gradio Interface
57
+ with gr.Blocks() as demo:
58
+ gr.Markdown("# FastLanguageModel Inference App")
59
+
60
+ instruction_input = gr.Textbox(label="Instruction", placeholder="Enter your instruction here")
61
+ input_data_input = gr.Textbox(label="Input Data (Optional)", placeholder="Enter your input data here (optional)")
62
+ output_text = gr.Textbox(label="Generated Response")
63
+
64
+ generate_button = gr.Button("Generate Response")
65
+
66
+ # Connect the Gradio button click event to the response generation function
67
+ generate_button.click(
68
+ fn=generate_response,
69
+ inputs=[instruction_input, input_data_input],
70
+ outputs=[output_text]
71
+ )
72
+
73
+ # Launch the Gradio app
74
+ demo.launch()