Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,17 @@
|
|
1 |
-
|
|
|
2 |
from unsloth import FastLanguageModel
|
|
|
3 |
from transformers import TextStreamer
|
4 |
-
import torch
|
5 |
|
6 |
# Load the model and tokenizer
|
7 |
model_name = "BidhanAcharya/FineTunedQWENoncoding" # Replace with your actual model path
|
8 |
max_seq_length = 512 # Example, adjust according to your model
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
# Load the model and tokenizer with the FastLanguageModel method
|
13 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
@@ -20,6 +24,9 @@ model, tokenizer = FastLanguageModel.from_pretrained(
|
|
20 |
# Set the model to inference mode
|
21 |
FastLanguageModel.for_inference(model)
|
22 |
|
|
|
|
|
|
|
23 |
# Define the Alpaca prompt format
|
24 |
alpaca_prompt = "### Instruction:\n{}\n\n### Input:\n{}\n\n### Response:\n{}"
|
25 |
|
@@ -42,7 +49,6 @@ def generate_response(instruction, input_data):
|
|
42 |
)
|
43 |
|
44 |
# Move input tensors to the correct device (GPU/CPU)
|
45 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
inputs = inputs.to(device)
|
47 |
|
48 |
# Generate tokens with the model
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import torch
|
3 |
from unsloth import FastLanguageModel
|
4 |
+
import gradio as gr
|
5 |
from transformers import TextStreamer
|
|
|
6 |
|
7 |
# Load the model and tokenizer
|
8 |
model_name = "BidhanAcharya/FineTunedQWENoncoding" # Replace with your actual model path
|
9 |
max_seq_length = 512 # Example, adjust according to your model
|
10 |
+
|
11 |
+
# Check if a GPU is available, otherwise fall back to CPU
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
14 |
+
load_in_4bit = torch.cuda.is_available() # Use 4-bit precision if a GPU is present, otherwise use standard precision
|
15 |
|
16 |
# Load the model and tokenizer with the FastLanguageModel method
|
17 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
|
|
24 |
# Set the model to inference mode
|
25 |
FastLanguageModel.for_inference(model)
|
26 |
|
27 |
+
# Move the model to the appropriate device (GPU/CPU)
|
28 |
+
model = model.to(device)
|
29 |
+
|
30 |
# Define the Alpaca prompt format
|
31 |
alpaca_prompt = "### Instruction:\n{}\n\n### Input:\n{}\n\n### Response:\n{}"
|
32 |
|
|
|
49 |
)
|
50 |
|
51 |
# Move input tensors to the correct device (GPU/CPU)
|
|
|
52 |
inputs = inputs.to(device)
|
53 |
|
54 |
# Generate tokens with the model
|