import netron import threading import gradio as gr import os from PIL import Image import cv2 import numpy as np from yolov5 import xai_yolov5 from yolov8 import xai_yolov8s # Sample images directory sample_images = { "Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"), "Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"), } def load_sample_image(sample_name): """Load a sample image based on user selection.""" image_path = sample_images.get(sample_name) if image_path and os.path.exists(image_path): return Image.open(image_path) return None def process_image(sample_choice, uploaded_image, yolo_versions, target_lyr = -5, n_components = 8): """Process the image using selected YOLO models.""" # Load sample or uploaded image if uploaded_image is not None: image = uploaded_image else: image = load_sample_image(sample_choice) # Preprocess image image = np.array(image) image = cv2.resize(image, (640, 640)) result_images = [] # Apply selected models for yolo_version in yolo_versions: if yolo_version == "yolov5": result_images.append(xai_yolov5(image, target_lyr = -5, n_components = 8)) elif yolo_version == "yolov8s": result_images.append(xai_yolov8s(image)) else: result_images.append((Image.fromarray(image), f"{yolo_version} not implemented.")) return result_images def view_model(selected_models): """Generate Netron visualization for the selected models.""" netron_html = "" for model in selected_models: if model == "yolov5": netron_html = f""" """ return netron_html if netron_html else "

No valid models selected for visualization.

" # CSS to style the Gradio components and HTML content custom_css = """ body { background-position: center; background-size: cover; background-attachment: fixed; height: 100%; /* Ensure body height is 100% of the viewport */ margin: 0; overflow-y: auto; /* Allow vertical scrolling */ } .custom-row { display: flex; justify-content: center; padding: 20px; } .custom-button { background-color: #6a1b9a; color: white; font-size: 14px; /* Reduced font size */ width: 120px; /* Reduced width */ border-radius: 8px; cursor: pointer; } /* Custom border styles for all Gradio components */ .gradio-container, .gradio-row, .gradio-column, .gradio-input, .gradio-image, .gradio-checkgroup, .gradio-button, .gradio-markdown { border: 3px solid black !important; /* Border width and color */ border-radius: 8px !important; /* Rounded corners */ } /* Additional customizations for images to enhance visibility of the border */ .gradio-image img { border-radius: 8px !important; border: 3px solid black !important; /* Border for image */ } /* Custom Row for images and buttons */ .custom-row img { border-radius: 10px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1); } #highlighted-text { font-weight: bold; color: #1976d2; } .gradio-block { max-height: 100vh; /* Allow scrolling within the Gradio blocks */ overflow-y: auto; /* Enable scrolling for the content if it overflows */ } #neural-vista-title { color: purple !important; /* Purple color for the title */ font-size: 32px; /* Adjust font size as needed */ font-weight: bold; text-align: center; } #neural-vista-text { color: purple !important; /* Purple color for the title */ font-size: 18px; /* Adjust font size as needed */ font-weight: bold; text-align: center; } """ # Then in the Gradio interface: with gr.Blocks(css=custom_css) as interface: gr.HTML(""" NeuralVista

A harmonious framework of tools ☼ designed to illuminate the inner workings of AI. """) # Default sample default_sample = "Sample 1" with gr.Row(): # Left side: Sample selection and image upload with gr.Column(): sample_selection = gr.Radio( choices=list(sample_images.keys()), label="Select a Sample Image", value=default_sample, ) upload_image = gr.Image( label="Upload an Image", type="pil", ) selected_models = gr.CheckboxGroup( choices=["yolov5", "yolov8s"], value=["yolov5"], label="Select Model(s)", ) #with gr.Row(elem_classes="custom-row"): run_button = gr.Button("Run", elem_classes="custom-button") with gr.Column(): sample_display = gr.Image( value=load_sample_image(default_sample), label="Selected Sample Image", ) gr.HTML("""The visualization demonstrates object detection and interpretability. Detected objects are highlighted with bounding boxes, while the heatmap reveals regions of focus, offering insights into the model's decision-making process.""") # Results and visualization with gr.Row(elem_classes="custom-row"): result_gallery = gr.Gallery( label="Results", rows=1, height="auto", # Adjust height automatically based on content columns=1 , object_fit="contain" ) netron_display = gr.HTML(label="Netron Visualization") # Update sample image sample_selection.change( fn=load_sample_image, inputs=sample_selection, outputs=sample_display, ) gr.HTML(""" Concept Discovery involves identifying interpretable high-level features or concepts within a deep learning model's representation. It aims to understand what a model has learned and how these learned features relate to meaningful attributes in the data.

Deep Feature Factorization (DFF) is a technique that decomposes the deep features learned by a model into disentangled and interpretable components. It typically involves matrix factorization methods applied to activation maps, enabling the identification of semantically meaningful concepts captured by the model. Together, these methods enhance model interpretability and provide insights into the decision-making process of neural networks. """) with gr.Row(elem_classes="custom-row"): dff_gallery = gr.Gallery( label="Deep Feature Factorization", rows=2, # 8 rows columns=4, # 1 image per row object_fit="fit", height="auto" # Adjust as needed ) # Multi-threaded processing def run_both(sample_choice, uploaded_image, selected_models): results = [] netron_html = "" # Thread to process the image def process_thread(): nonlocal results target_lyr = -5 n_components = 8 results = process_image(sample_choice, uploaded_image, selected_models, target_lyr = -5, n_components = 8) # Thread to generate Netron visualization def netron_thread(): nonlocal netron_html gr.HTML(""" Generated abstract visualizations of model""") netron_html = view_model(selected_models) # Launch threads t1 = threading.Thread(target=process_thread) t2 = threading.Thread(target=netron_thread) t1.start() t2.start() t1.join() t2.join() image1, text, image2 = results[0] if isinstance(image2, list): # Check if image2 contains exactly 8 images if len(image2) == 8: print("image2 contains 8 images.") else: print("Warning: image2 does not contain exactly 8 images.") else: print("Error: image2 is not a list of images.") return [(image1, text)], netron_html, image2 # Run button click run_button.click( fn=run_both, inputs=[sample_selection, upload_image, selected_models], outputs=[result_gallery, netron_display, dff_gallery], ) # Launch Gradio interface if __name__ == "__main__": interface.launch(share=True)