Spaces:
Sleeping
Sleeping
Commit
·
b63af6d
1
Parent(s):
fd2244b
Update: support for yolo-explainer
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from pytorch_grad_cam import EigenCAM
|
|
10 |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
11 |
from PIL import Image
|
12 |
import gradio as gr
|
|
|
13 |
|
14 |
# Global Color Palette
|
15 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
@@ -42,8 +43,16 @@ def draw_detections(boxes, colors, names, img):
|
|
42 |
|
43 |
# Load the appropriate YOLO model based on the version
|
44 |
def load_yolo_model(version="yolov5"):
|
45 |
-
if version == "
|
|
|
|
|
46 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
else:
|
48 |
raise ValueError(f"Unsupported YOLO version: {version}")
|
49 |
|
@@ -51,7 +60,8 @@ def load_yolo_model(version="yolov5"):
|
|
51 |
model.cpu()
|
52 |
return model
|
53 |
|
54 |
-
|
|
|
55 |
image = np.array(image)
|
56 |
image = cv2.resize(image, (640, 640))
|
57 |
rgb_img = image.copy()
|
@@ -66,6 +76,23 @@ def process_image(image, yolo_versions=["yolov5"]):
|
|
66 |
|
67 |
# Process each selected YOLO model
|
68 |
for yolo_version in yolo_versions:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
# Load the model based on YOLO version
|
70 |
model = load_yolo_model(yolo_version)
|
71 |
target_layers = [model.model.model.model[-2]] # Assumes last layer is used for Grad-CAM
|
@@ -94,20 +121,22 @@ def process_image(image, yolo_versions=["yolov5"]):
|
|
94 |
|
95 |
return result_images
|
96 |
|
|
|
97 |
interface = gr.Interface(
|
98 |
fn=process_image,
|
99 |
inputs=[
|
100 |
gr.Image(type="pil", label="Upload an Image"),
|
101 |
gr.CheckboxGroup(
|
102 |
-
choices=["yolov5"],
|
103 |
-
value=["yolov5"], #
|
104 |
label="Select Model(s)",
|
105 |
-
)
|
|
|
106 |
],
|
107 |
-
outputs
|
108 |
title="Visualising the key image features that drive decisions with our explainable AI tool.",
|
109 |
-
description="XAI: Upload an image to visualize object detection of your models
|
110 |
)
|
111 |
|
112 |
if __name__ == "__main__":
|
113 |
-
interface.launch()
|
|
|
10 |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
11 |
from PIL import Image
|
12 |
import gradio as gr
|
13 |
+
from YOLOv8_Explainer import yolov8_heatmap, display_images # Import Explainer
|
14 |
|
15 |
# Global Color Palette
|
16 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
|
|
43 |
|
44 |
# Load the appropriate YOLO model based on the version
|
45 |
def load_yolo_model(version="yolov5"):
|
46 |
+
if version == "yolov3":
|
47 |
+
model = torch.hub.load('ultralytics/yolov3', 'yolov3', pretrained=True)
|
48 |
+
elif version == "yolov5":
|
49 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
50 |
+
elif version == "yolov7":
|
51 |
+
model = torch.hub.load('WongKinYiu/yolov7', 'yolov7', pretrained=True)
|
52 |
+
elif version == "yolov8":
|
53 |
+
model = torch.hub.load('ultralytics/yolov5:v7.0', 'yolov5', pretrained=True)
|
54 |
+
elif version == "yolov10":
|
55 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5m', pretrained=True)
|
56 |
else:
|
57 |
raise ValueError(f"Unsupported YOLO version: {version}")
|
58 |
|
|
|
60 |
model.cpu()
|
61 |
return model
|
62 |
|
63 |
+
# Main function for Grad-CAM visualization
|
64 |
+
def process_image(image, yolo_versions=["yolov5"], use_explainer=False):
|
65 |
image = np.array(image)
|
66 |
image = cv2.resize(image, (640, 640))
|
67 |
rgb_img = image.copy()
|
|
|
76 |
|
77 |
# Process each selected YOLO model
|
78 |
for yolo_version in yolo_versions:
|
79 |
+
if use_explainer and yolo_version == "yolov8":
|
80 |
+
# Use YOLOv8 Explainer for EigenCAM heatmap
|
81 |
+
explainer_model = yolov8_heatmap(
|
82 |
+
weight="yolov8n.pt",
|
83 |
+
conf_threshold=0.4,
|
84 |
+
device="cpu",
|
85 |
+
method="EigenCAM",
|
86 |
+
layer=[10, 12, 14, 16, 18, -3],
|
87 |
+
backward_type="all",
|
88 |
+
ratio=0.02,
|
89 |
+
show_box=True,
|
90 |
+
renormalize=False,
|
91 |
+
)
|
92 |
+
imagelist = explainer_model(img_path=image)
|
93 |
+
display_images(imagelist)
|
94 |
+
continue # Skip Grad-CAM for this case
|
95 |
+
|
96 |
# Load the model based on YOLO version
|
97 |
model = load_yolo_model(yolo_version)
|
98 |
target_layers = [model.model.model.model[-2]] # Assumes last layer is used for Grad-CAM
|
|
|
121 |
|
122 |
return result_images
|
123 |
|
124 |
+
# Gradio Interface
|
125 |
interface = gr.Interface(
|
126 |
fn=process_image,
|
127 |
inputs=[
|
128 |
gr.Image(type="pil", label="Upload an Image"),
|
129 |
gr.CheckboxGroup(
|
130 |
+
choices=["yolov3", "yolov5", "yolov7", "yolov8", "yolov10"],
|
131 |
+
value=["yolov5"], # Default to YOLOv5
|
132 |
label="Select Model(s)",
|
133 |
+
),
|
134 |
+
gr.Checkbox(label="Use YOLOv8 Explainer?", value=False)
|
135 |
],
|
136 |
+
outputs=gr.Gallery(label="Results", elem_id="gallery", rows=2, height=500),
|
137 |
title="Visualising the key image features that drive decisions with our explainable AI tool.",
|
138 |
+
description="XAI: Upload an image to visualize object detection of your models."
|
139 |
)
|
140 |
|
141 |
if __name__ == "__main__":
|
142 |
+
interface.launch()
|