Spaces:
Sleeping
Sleeping
update xai params
Browse files
yolov5.py
CHANGED
@@ -8,6 +8,18 @@ from pytorch_grad_cam import EigenCAM
|
|
8 |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
9 |
import gradio as gr
|
10 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Global Color Palette
|
12 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
13 |
|
@@ -56,7 +68,7 @@ def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
|
56 |
return cam_image, renormalized_cam_image
|
57 |
|
58 |
|
59 |
-
def xai_yolov5(image):
|
60 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
61 |
model.eval()
|
62 |
model.cpu()
|
@@ -86,21 +98,6 @@ def xai_yolov5(image):
|
|
86 |
return Image.fromarray(final_image), caption, result
|
87 |
|
88 |
|
89 |
-
|
90 |
-
import numpy as np
|
91 |
-
from PIL import Image
|
92 |
-
import torch
|
93 |
-
import cv2
|
94 |
-
from typing import Callable, List, Tuple, Optional
|
95 |
-
from sklearn.decomposition import NMF
|
96 |
-
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
|
97 |
-
from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image
|
98 |
-
import matplotlib.pyplot as plt
|
99 |
-
from pytorch_grad_cam.utils.image import show_factorization_on_image
|
100 |
-
import requests
|
101 |
-
import yaml
|
102 |
-
import matplotlib.patches as patches
|
103 |
-
|
104 |
def dff_l(activations, model, n_components):
|
105 |
batch_size, channels, h, w = activations.shape
|
106 |
print('activation', activations.shape)
|
|
|
8 |
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
9 |
import gradio as gr
|
10 |
import os
|
11 |
+
from typing import Callable, List, Tuple, Optional
|
12 |
+
from sklearn.decomposition import NMF
|
13 |
+
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
|
14 |
+
from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
from pytorch_grad_cam.utils.image import show_factorization_on_image
|
17 |
+
import requests
|
18 |
+
import yaml
|
19 |
+
import matplotlib.patches as patches
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
# Global Color Palette
|
24 |
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
25 |
|
|
|
68 |
return cam_image, renormalized_cam_image
|
69 |
|
70 |
|
71 |
+
def xai_yolov5(image,target_lyr = -5, n_components = 8):
|
72 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
73 |
model.eval()
|
74 |
model.cpu()
|
|
|
98 |
return Image.fromarray(final_image), caption, result
|
99 |
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def dff_l(activations, model, n_components):
|
102 |
batch_size, channels, h, w = activations.shape
|
103 |
print('activation', activations.shape)
|