BhumikaMak commited on
Commit
53bea29
·
verified ·
1 Parent(s): 8b3111f

update xai params

Browse files
Files changed (1) hide show
  1. yolov5.py +13 -16
yolov5.py CHANGED
@@ -8,6 +8,18 @@ from pytorch_grad_cam import EigenCAM
8
  from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
9
  import gradio as gr
10
  import os
 
 
 
 
 
 
 
 
 
 
 
 
11
  # Global Color Palette
12
  COLORS = np.random.uniform(0, 255, size=(80, 3))
13
 
@@ -56,7 +68,7 @@ def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
56
  return cam_image, renormalized_cam_image
57
 
58
 
59
- def xai_yolov5(image):
60
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
61
  model.eval()
62
  model.cpu()
@@ -86,21 +98,6 @@ def xai_yolov5(image):
86
  return Image.fromarray(final_image), caption, result
87
 
88
 
89
-
90
- import numpy as np
91
- from PIL import Image
92
- import torch
93
- import cv2
94
- from typing import Callable, List, Tuple, Optional
95
- from sklearn.decomposition import NMF
96
- from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
97
- from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image
98
- import matplotlib.pyplot as plt
99
- from pytorch_grad_cam.utils.image import show_factorization_on_image
100
- import requests
101
- import yaml
102
- import matplotlib.patches as patches
103
-
104
  def dff_l(activations, model, n_components):
105
  batch_size, channels, h, w = activations.shape
106
  print('activation', activations.shape)
 
8
  from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
9
  import gradio as gr
10
  import os
11
+ from typing import Callable, List, Tuple, Optional
12
+ from sklearn.decomposition import NMF
13
+ from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients
14
+ from pytorch_grad_cam.utils.image import scale_cam_image, create_labels_legend, show_factorization_on_image
15
+ import matplotlib.pyplot as plt
16
+ from pytorch_grad_cam.utils.image import show_factorization_on_image
17
+ import requests
18
+ import yaml
19
+ import matplotlib.patches as patches
20
+
21
+
22
+
23
  # Global Color Palette
24
  COLORS = np.random.uniform(0, 255, size=(80, 3))
25
 
 
68
  return cam_image, renormalized_cam_image
69
 
70
 
71
+ def xai_yolov5(image,target_lyr = -5, n_components = 8):
72
  model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
73
  model.eval()
74
  model.cpu()
 
98
  return Image.fromarray(final_image), caption, result
99
 
100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  def dff_l(activations, model, n_components):
102
  batch_size, channels, h, w = activations.shape
103
  print('activation', activations.shape)