BhumikaMak commited on
Commit
4dfed64
·
verified ·
1 Parent(s): cf22491

update: button colour, text background

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -100,7 +100,7 @@ body {
100
  box-sizing: border-box; /* Ensure consistent sizing */
101
  }
102
  #run-button {
103
- background-color: #6a1b9a !important;
104
  color: white !important;
105
  font-size: 12px !important; /* Small font size */
106
  width: 100px !important; /* Fixed width */
@@ -152,6 +152,7 @@ body {
152
  font-size: 18px; /* Adjust font size as needed */
153
  font-weight: bold;
154
  text-align: center;
 
155
  }
156
 
157
  """
@@ -161,10 +162,10 @@ body {
161
  with gr.Blocks(css=custom_css) as interface:
162
 
163
  gr.HTML("""
164
- <span style="color: #800000; font-family: 'Papyrus', cursive; font-weight: bold; font-size: 32px;">NeuralVista</span><br><br>
165
 
166
 
167
- <span style="color: black; font-family: 'Papyrus', cursive; font-size: 18px;">A harmonious framework of tools ☼ designed to illuminate the inner workings of AI.</span>
168
  """)
169
 
170
  # Default sample
@@ -200,7 +201,7 @@ with gr.Blocks(css=custom_css) as interface:
200
  )
201
 
202
 
203
- gr.HTML("""<span style="font-family: 'Papyrus', cursive; font-size: 14px;">The visualization demonstrates object detection and interpretability. Detected objects are highlighted with bounding boxes, while the heatmap reveals regions of focus, offering insights into the model's decision-making process.</span>""")
204
  # Results and visualization
205
  with gr.Row(elem_classes="custom-row"):
206
  result_gallery = gr.Gallery(
@@ -222,9 +223,9 @@ with gr.Blocks(css=custom_css) as interface:
222
 
223
  gr.HTML("""
224
  <span style="font-family: 'Papyrus', cursive; font-size: 14px;">
225
- <span style="color: #800000 ;">Concept Discovery</span> is the process of uncovering the hidden, high-level features that a deep learning model has learned. It provides a way to understand the essence of its internal representations, akin to peering into the mind of the model and revealing the meaningful patterns it detects in the data.
226
  <br><br>
227
- <span style="color: #800000 ;">Deep Feature Factorization</span> (DFF) serves as a tool for breaking down these complex features into simpler, more interpretable components. By applying matrix factorization on activation maps, it untangles the intricate web of learned representations, making it easier to comprehend what the model is truly focusing on. Together, these methods bring us closer to understanding the underlying logic of neural networks, shedding light on the often enigmatic decisions they make.
228
  </span>
229
  """)
230
 
 
100
  box-sizing: border-box; /* Ensure consistent sizing */
101
  }
102
  #run-button {
103
+ background-color: #800000 !important;
104
  color: white !important;
105
  font-size: 12px !important; /* Small font size */
106
  width: 100px !important; /* Fixed width */
 
152
  font-size: 18px; /* Adjust font size as needed */
153
  font-weight: bold;
154
  text-align: center;
155
+
156
  }
157
 
158
  """
 
162
  with gr.Blocks(css=custom_css) as interface:
163
 
164
  gr.HTML("""
165
+ <span style="color: #800000; font-family: 'Papyrus', cursive; font-weight: bold; font-size: 32px; background-color: #d3d3d3;">NeuralVista</span><br><br>
166
 
167
 
168
+ <span style="color: black; font-family: 'Papyrus', cursive; font-size: 18px; background-color: #d3d3d3;">A harmonious framework of tools ☼ designed to illuminate the inner workings of AI.</span>
169
  """)
170
 
171
  # Default sample
 
201
  )
202
 
203
 
204
+ gr.HTML("""<span style="font-family: 'Papyrus', cursive; font-size: 14px; background-color: #d3d3d3;">The visualization demonstrates object detection and interpretability. Detected objects are highlighted with bounding boxes, while the heatmap reveals regions of focus, offering insights into the model's decision-making process.</span>""")
205
  # Results and visualization
206
  with gr.Row(elem_classes="custom-row"):
207
  result_gallery = gr.Gallery(
 
223
 
224
  gr.HTML("""
225
  <span style="font-family: 'Papyrus', cursive; font-size: 14px;">
226
+ <span style="color: #800000 background-color: #d3d3d3; ;">Concept Discovery</span> is the process of uncovering the hidden, high-level features that a deep learning model has learned. It provides a way to understand the essence of its internal representations, akin to peering into the mind of the model and revealing the meaningful patterns it detects in the data.
227
  <br><br>
228
+ <span style="color: #800000 background-color: #d3d3d3;;">Deep Feature Factorization</span> (DFF) serves as a tool for breaking down these complex features into simpler, more interpretable components. By applying matrix factorization on activation maps, it untangles the intricate web of learned representations, making it easier to comprehend what the model is truly focusing on. Together, these methods bring us closer to understanding the underlying logic of neural networks, shedding light on the often enigmatic decisions they make.
229
  </span>
230
  """)
231