Spaces:
Sleeping
Sleeping
Commit
·
4b26edc
1
Parent(s):
0318d64
Add: DFF support
Browse files
yolov5.py
DELETED
|
@@ -1,195 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import cv2
|
| 3 |
-
import numpy as np
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import torchvision.transforms as transforms
|
| 6 |
-
from pytorch_grad_cam import EigenCAM
|
| 7 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
| 8 |
-
import gradio as gr
|
| 9 |
-
"""
|
| 10 |
-
# Global Color Palette
|
| 11 |
-
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def parse_detections(results):
|
| 15 |
-
detections = results.pandas().xyxy[0].to_dict()
|
| 16 |
-
boxes, colors, names, classes = [], [], [], []
|
| 17 |
-
for i in range(len(detections["xmin"])):
|
| 18 |
-
confidence = detections["confidence"][i]
|
| 19 |
-
if confidence < 0.2:
|
| 20 |
-
continue
|
| 21 |
-
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
|
| 22 |
-
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
|
| 23 |
-
name, category = detections["name"][i], int(detections["class"][i])
|
| 24 |
-
boxes.append((xmin, ymin, xmax, ymax))
|
| 25 |
-
colors.append(COLORS[category])
|
| 26 |
-
names.append(name)
|
| 27 |
-
classes.append(category)
|
| 28 |
-
return boxes, colors, names, classes
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def draw_detections(boxes, colors, names, classes, img):
|
| 32 |
-
for box, color, name, cls in zip(boxes, colors, names, classes):
|
| 33 |
-
xmin, ymin, xmax, ymax = box
|
| 34 |
-
label = f"{cls}: {name}" # Combine class ID and name
|
| 35 |
-
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
|
| 36 |
-
cv2.putText(
|
| 37 |
-
img, label, (xmin, ymin - 5),
|
| 38 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
|
| 39 |
-
lineType=cv2.LINE_AA
|
| 40 |
-
)
|
| 41 |
-
return img
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
| 45 |
-
cam = EigenCAM(model, target_layers)
|
| 46 |
-
grayscale_cam = cam(tensor)[0, :, :]
|
| 47 |
-
img_float = np.float32(rgb_img) / 255
|
| 48 |
-
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
| 49 |
-
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
| 50 |
-
for x1, y1, x2, y2 in boxes:
|
| 51 |
-
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
| 52 |
-
renormalized_cam = scale_cam_image(renormalized_cam)
|
| 53 |
-
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
|
| 54 |
-
|
| 55 |
-
return cam_image, renormalized_cam_image
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def xai_yolov5(image):
|
| 59 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
| 60 |
-
model.eval()
|
| 61 |
-
model.cpu()
|
| 62 |
-
|
| 63 |
-
target_layers = [model.model.model.model[-2]] # Grad-CAM target layer
|
| 64 |
-
|
| 65 |
-
# Run YOLO detection
|
| 66 |
-
results = model([image])
|
| 67 |
-
boxes, colors, names, classes = parse_detections(results)
|
| 68 |
-
detections_img = draw_detections(boxes, colors, names,classes, image.copy())
|
| 69 |
-
|
| 70 |
-
# Prepare input tensor for Grad-CAM
|
| 71 |
-
img_float = np.float32(image) / 255
|
| 72 |
-
transform = transforms.ToTensor()
|
| 73 |
-
tensor = transform(img_float).unsqueeze(0)
|
| 74 |
-
|
| 75 |
-
# Grad-CAM visualization
|
| 76 |
-
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, tensor, image, boxes)
|
| 77 |
-
|
| 78 |
-
# Combine results
|
| 79 |
-
final_image = np.hstack((image, detections_img, renormalized_cam_image))
|
| 80 |
-
caption = "Results using YOLOv5"
|
| 81 |
-
return Image.fromarray(final_image), caption
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
"""
|
| 85 |
-
|
| 86 |
-
import torch
|
| 87 |
-
import cv2
|
| 88 |
-
import numpy as np
|
| 89 |
-
from PIL import Image
|
| 90 |
-
import torchvision.transforms as transforms
|
| 91 |
-
from pytorch_grad_cam import EigenCAM
|
| 92 |
-
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
|
| 93 |
-
import gradio as gr
|
| 94 |
-
from sklearn.decomposition import NMF # For feature factorization
|
| 95 |
-
|
| 96 |
-
# Global Color Palette
|
| 97 |
-
COLORS = np.random.uniform(0, 255, size=(80, 3))
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
def parse_detections(results):
|
| 101 |
-
detections = results.pandas().xyxy[0].to_dict()
|
| 102 |
-
boxes, colors, names, classes = [], [], [], []
|
| 103 |
-
for i in range(len(detections["xmin"])):
|
| 104 |
-
confidence = detections["confidence"][i]
|
| 105 |
-
if confidence < 0.2:
|
| 106 |
-
continue
|
| 107 |
-
xmin, ymin = int(detections["xmin"][i]), int(detections["ymin"][i])
|
| 108 |
-
xmax, ymax = int(detections["xmax"][i]), int(detections["ymax"][i])
|
| 109 |
-
name, category = detections["name"][i], int(detections["class"][i])
|
| 110 |
-
boxes.append((xmin, ymin, xmax, ymax))
|
| 111 |
-
colors.append(COLORS[category])
|
| 112 |
-
names.append(name)
|
| 113 |
-
classes.append(category)
|
| 114 |
-
return boxes, colors, names, classes
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
def draw_detections(boxes, colors, names, classes, img):
|
| 118 |
-
for box, color, name, cls in zip(boxes, colors, names, classes):
|
| 119 |
-
xmin, ymin, xmax, ymax = box
|
| 120 |
-
label = f"{cls}: {name}" # Combine class ID and name
|
| 121 |
-
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2)
|
| 122 |
-
cv2.putText(
|
| 123 |
-
img, label, (xmin, ymin - 5),
|
| 124 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
|
| 125 |
-
lineType=cv2.LINE_AA
|
| 126 |
-
)
|
| 127 |
-
return img
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
def generate_cam_image(model, target_layers, tensor, rgb_img, boxes):
|
| 131 |
-
cam = EigenCAM(model, target_layers)
|
| 132 |
-
grayscale_cam = cam(tensor)[0, :, :]
|
| 133 |
-
img_float = np.float32(rgb_img) / 255
|
| 134 |
-
cam_image = show_cam_on_image(img_float, grayscale_cam, use_rgb=True)
|
| 135 |
-
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
|
| 136 |
-
for x1, y1, x2, y2 in boxes:
|
| 137 |
-
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
|
| 138 |
-
renormalized_cam = scale_cam_image(renormalized_cam)
|
| 139 |
-
renormalized_cam_image = show_cam_on_image(img_float, renormalized_cam, use_rgb=True)
|
| 140 |
-
|
| 141 |
-
return cam_image, renormalized_cam_image
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def deep_feature_factorization(features):
|
| 145 |
-
# Reshape the features for factorization (Flatten spatial dimensions)
|
| 146 |
-
n, c, h, w = features.shape
|
| 147 |
-
reshaped_features = features.view(c, -1).detach().cpu().numpy()
|
| 148 |
-
|
| 149 |
-
# Apply Non-Negative Matrix Factorization (NMF)
|
| 150 |
-
nmf = NMF(n_components=10, init='random', random_state=42, max_iter=300)
|
| 151 |
-
basis = nmf.fit_transform(reshaped_features)
|
| 152 |
-
coefficients = nmf.components_
|
| 153 |
-
|
| 154 |
-
# Reconstruct the feature map
|
| 155 |
-
reconstructed = np.dot(basis, coefficients).reshape((c, h, w))
|
| 156 |
-
|
| 157 |
-
return torch.tensor(reconstructed, dtype=torch.float32).unsqueeze(0)
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
def xai_yolov5(image):
|
| 161 |
-
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
| 162 |
-
model.eval()
|
| 163 |
-
model.cpu()
|
| 164 |
-
|
| 165 |
-
target_layers = [model.model.model.model[-2]]
|
| 166 |
-
|
| 167 |
-
# Run YOLO detection
|
| 168 |
-
results = model([image])
|
| 169 |
-
boxes, colors, names, classes = parse_detections(results)
|
| 170 |
-
detections_img = draw_detections(boxes, colors, names, classes, image.copy())
|
| 171 |
-
|
| 172 |
-
# Extract intermediate features
|
| 173 |
-
def hook(module, input, output):
|
| 174 |
-
return output
|
| 175 |
-
|
| 176 |
-
hook_handle = target_layers[0].register_forward_hook(hook)
|
| 177 |
-
with torch.no_grad():
|
| 178 |
-
model([image])
|
| 179 |
-
intermediate_features = hook_handle.remove()
|
| 180 |
-
|
| 181 |
-
# Apply Deep Feature Factorization
|
| 182 |
-
factored_features = deep_feature_factorization(intermediate_features)
|
| 183 |
-
|
| 184 |
-
# Prepare input tensor for Grad-CAM
|
| 185 |
-
img_float = np.float32(image) / 255
|
| 186 |
-
transform = transforms.ToTensor()
|
| 187 |
-
tensor = transform(img_float).unsqueeze(0)
|
| 188 |
-
|
| 189 |
-
# Grad-CAM visualization using factored features
|
| 190 |
-
cam_image, renormalized_cam_image = generate_cam_image(model, target_layers, factored_features, image, boxes)
|
| 191 |
-
|
| 192 |
-
# Combine results
|
| 193 |
-
final_image = np.hstack((image, detections_img, renormalized_cam_image))
|
| 194 |
-
caption = "Results using YOLOv5 with Deep Feature Factorization"
|
| 195 |
-
return Image.fromarray(final_image), caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|