BhumikaMak commited on
Commit
2c5bc35
·
verified ·
1 Parent(s): cbecfd1

debug: list index out of range

Browse files
Files changed (1) hide show
  1. yolov5.py +3 -3
yolov5.py CHANGED
@@ -90,6 +90,7 @@ def xai_yolov5(image,target_lyr = -5, n_components = 8):
90
 
91
  rgb_img_float, batch_explanations, result = dff_nmf(image, target_lyr = -5, n_components = 8)
92
  #result = np.hstack(result)
 
93
  im = visualize_batch_explanations(rgb_img_float, batch_explanations) ##########to be displayed
94
 
95
  # Combine results
@@ -233,14 +234,13 @@ def dff_nmf(image, target_lyr, n_components):
233
 
234
  fig.canvas.draw() # Draw the canvas to make sure the image is rendered
235
  image_array = np.array(fig.canvas.renderer.buffer_rgba()) # Convert to numpy array
236
- print("____________image_arrya", image_array.shape)
237
  image_resized = cv2.resize(image_array, (640, 640))
238
  rgba_channels = cv2.split(image_resized)
239
  alpha_channel = rgba_channels[3]
240
  rgb_channels = np.stack(rgba_channels[:3], axis=-1)
241
- #overlay_img = (alpha_channel[..., None] * image) + ((1 - alpha_channel[..., None]) * rgb_channels)
242
  print("shape....", rgb_img_float.shape, rgb_channels.shape)
243
- visualization = show_factorization_on_image(rgb_img_float, rgb_channels , image_weight=0.3)
244
 
245
  #temp = image_array.reshape((rgb_img_float.shape[0],rgb_img_float.shape[1]) )
246
  #visualization = show_factorization_on_image(rgb_img_float, image_array.resize((rgb_img_float.shape)) , image_weight=0.3)
 
90
 
91
  rgb_img_float, batch_explanations, result = dff_nmf(image, target_lyr = -5, n_components = 8)
92
  #result = np.hstack(result)
93
+ print("sample...",rgb_img_float.shape,batch_explanations.shape )
94
  im = visualize_batch_explanations(rgb_img_float, batch_explanations) ##########to be displayed
95
 
96
  # Combine results
 
234
 
235
  fig.canvas.draw() # Draw the canvas to make sure the image is rendered
236
  image_array = np.array(fig.canvas.renderer.buffer_rgba()) # Convert to numpy array
 
237
  image_resized = cv2.resize(image_array, (640, 640))
238
  rgba_channels = cv2.split(image_resized)
239
  alpha_channel = rgba_channels[3]
240
  rgb_channels = np.stack(rgba_channels[:3], axis=-1)
241
+ overlay_img = (alpha_channel[..., None] * image) + ((1 - alpha_channel[..., None]) * rgb_channels)
242
  print("shape....", rgb_img_float.shape, rgb_channels.shape)
243
+ #visualization = show_factorization_on_image(rgb_img_float, rgb_channels , image_weight=0.3)
244
 
245
  #temp = image_array.reshape((rgb_img_float.shape[0],rgb_img_float.shape[1]) )
246
  #visualization = show_factorization_on_image(rgb_img_float, image_array.resize((rgb_img_float.shape)) , image_weight=0.3)