Spaces:
Sleeping
Sleeping
debug: dff_nmf removed prob, boxes
Browse files
yolov8.py
CHANGED
@@ -183,30 +183,30 @@ def dff_nmf(image, target_lyr, n_components):
|
|
183 |
detections = results[0] # The first element should contain the detection data
|
184 |
|
185 |
# Access detection results
|
186 |
-
boxes = detections.boxes.xyxy.cpu().numpy() # Bounding box coordinates (xyxy)
|
187 |
-
probs = detections.probs.cpu().numpy() # Confidence scores (probabilities)
|
188 |
-
classes = detections.classes.cpu().numpy() # Class IDs
|
189 |
|
190 |
# Filter detections with confidence score > threshold (e.g., 0.5)
|
191 |
-
high_conf_indices = probs > 0.5
|
192 |
-
high_conf_boxes = boxes[high_conf_indices]
|
193 |
-
high_conf_classes = classes[high_conf_indices]
|
194 |
-
high_conf_probs = probs[high_conf_indices]
|
195 |
|
196 |
# Example visualization and output processing
|
197 |
fig, ax = plt.subplots(1, figsize=(8, 8))
|
198 |
ax.axis("off")
|
199 |
ax.imshow(rgb_img_float)
|
200 |
|
201 |
-
for box, cls, prob in zip(high_conf_boxes, high_conf_classes, high_conf_probs):
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
|
208 |
-
|
209 |
-
fig.canvas.draw()
|
210 |
image_array = np.array(fig.canvas.renderer.buffer_rgba())
|
211 |
image_resized = cv2.resize(image_array, (640, 640))
|
212 |
rgba_channels = cv2.split(image_resized)
|
|
|
183 |
detections = results[0] # The first element should contain the detection data
|
184 |
|
185 |
# Access detection results
|
186 |
+
#boxes = detections.boxes.xyxy.cpu().numpy() # Bounding box coordinates (xyxy)
|
187 |
+
#probs = detections.probs.cpu().numpy() # Confidence scores (probabilities)
|
188 |
+
#classes = detections.classes.cpu().numpy() # Class IDs
|
189 |
|
190 |
# Filter detections with confidence score > threshold (e.g., 0.5)
|
191 |
+
#high_conf_indices = probs > 0.5
|
192 |
+
#high_conf_boxes = boxes[high_conf_indices]
|
193 |
+
#high_conf_classes = classes[high_conf_indices]
|
194 |
+
#high_conf_probs = probs[high_conf_indices]
|
195 |
|
196 |
# Example visualization and output processing
|
197 |
fig, ax = plt.subplots(1, figsize=(8, 8))
|
198 |
ax.axis("off")
|
199 |
ax.imshow(rgb_img_float)
|
200 |
|
201 |
+
#for box, cls, prob in zip(high_conf_boxes, high_conf_classes, high_conf_probs):
|
202 |
+
# x1, y1, x2, y2 = box
|
203 |
+
# rect = patches.Rectangle((x1, y1), x2 - x1, y2 - y1,
|
204 |
+
# linewidth=2, edgecolor='r', facecolor='none')
|
205 |
+
# ax.add_patch(rect)
|
206 |
+
# ax.text(x1, y1, f"Class {cls}, Prob {prob:.2f}", color='r', fontsize=12, verticalalignment='top')
|
207 |
|
208 |
+
# plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
|
209 |
+
#fig.canvas.draw()
|
210 |
image_array = np.array(fig.canvas.renderer.buffer_rgba())
|
211 |
image_resized = cv2.resize(image_array, (640, 640))
|
212 |
rgba_channels = cv2.split(image_resized)
|