NeuralVista / app.py
BhumikaMak's picture
Update app.py
6fb2f90 verified
raw
history blame
4.05 kB
import netron
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
import time
import tempfile
# Sample images directory
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
"""Load a sample image based on user selection."""
image_path = sample_images.get(sample_name)
if image_path and os.path.exists(image_path):
return Image.open(image_path)
return None
def process_image(sample_choice, uploaded_image, yolo_versions):
"""Process the image using selected YOLO models."""
if uploaded_image is not None:
image = uploaded_image # Use the uploaded image
else:
image = load_sample_image(sample_choice) # Use selected sample image
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
return result_images
def view_model(selected_models):
for model in selected_models[0]:
if model == "yolov5":
# Embed the Netron viewer using an iframe with the generated URL
iframe_html = f"""
<iframe
src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx"
width="100%"
height="800"
frameborder="0">
</iframe>
"""
return iframe_html
return "<p>Please select a valid model for Netron visualization.</p>"
# Custom CSS for styling (optional)
custom_css = """
#run_button {
background-color: purple;
color: white;
width: 120px;
border-radius: 5px;
font-size: 14px;
}
"""
with gr.Blocks(css=custom_css) as interface:
gr.Markdown("# NeuralVista: Visualize Object Detection of Your Models")
default_sample = "Sample 1"
with gr.Row():
# Left side: Sample selection and upload image
with gr.Column():
sample_selection = gr.Radio(
choices=list(sample_images.keys()),
label="Select a Sample Image",
type="value",
value=default_sample,
)
upload_image = gr.Image(
label="Upload an Image",
type="pil",
)
selected_models = gr.CheckboxGroup(
choices=["yolov5", "yolov8s"],
value=["yolov5"],
label="Select Model(s)",
)
run_button = gr.Button("Run", elem_id="run_button")
with gr.Column():
sample_display = gr.Image(
value=load_sample_image(default_sample),
label="Selected Sample Image",
)
# Below the sample image, display results and architecture side by side
with gr.Row():
result_gallery = gr.Gallery(
label="Results",
elem_id="gallery",
rows=1,
height=500,
)
netron_display = gr.HTML(label="Netron Visualization")
sample_selection.change(
fn=load_sample_image,
inputs=sample_selection,
outputs=sample_display,
)
run_button.click(
fn=process_image,
inputs=[sample_selection, upload_image, selected_models],
outputs=[result_gallery],
)
selected_models.change(
fn=view_model,
inputs=selected_models,
outputs=netron_display,
)
# Launching Gradio app and handling Netron visualization separately.
if __name__ == "__main__":
interface.launch(share=True)