Spaces:
Sleeping
Sleeping
File size: 4,132 Bytes
dbd2a18 9b2c5e1 dbd2a18 57419d8 dbd2a18 57419d8 dbd2a18 24f4b49 f7b8e0e dbd2a18 c3d8605 dbd2a18 aca98af dbd2a18 90ff42e aca98af dbd2a18 fa09b4a dbd2a18 d3127bb dbd2a18 d3127bb dbd2a18 d3127bb f504910 dbd2a18 9e7c847 dbd2a18 7838123 dbd2a18 408a665 dbd2a18 b30ea65 dbd2a18 408a665 dbd2a18 408a665 dbd2a18 20ca536 dbd2a18 408a665 7991981 dbd2a18 408a665 dbd2a18 408a665 1a11002 dbd2a18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import gradio as gr
import netron
import os
import threading
import time
from PIL import Image
import cv2
import numpy as np
import torch
# Sample images directory
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
# Preloaded model file path (update this path as needed)
preloaded_model_file = os.path.join(os.getcwd(), "weight_files/yolov5.onnx") # Example path
def load_sample_image(sample_name):
"""Load a sample image based on user selection."""
image_path = sample_images.get(sample_name)
if image_path and os.path.exists(image_path):
return Image.open(image_path)
return None
def process_image(sample_choice, uploaded_image, yolo_versions):
"""Process the image using selected YOLO models."""
if uploaded_image is not None:
image = uploaded_image # Use the uploaded image
else:
image = load_sample_image(sample_choice) # Use selected sample image
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not yet implemented."))
return result_images
def serve_netron(model_file):
"""Start the Netron server in a separate thread."""
threading.Thread(target=netron.start, args=(model_file,), daemon=True).start()
time.sleep(1) # Give some time for the server to start
return "http://localhost:8080" # Default Netron URL
def view_model():
"""Handle model visualization using preloaded model file."""
if not os.path.exists(preloaded_model_file):
return "Model file not found."
netron_url = serve_netron(preloaded_model_file)
return f'<iframe src="{netron_url}" width="100%" height="600px"></iframe>'
# Custom CSS for styling (optional)
custom_css = """
#run_button {
background-color: purple;
color: white;
width: 120px;
border-radius: 5px;
font-size: 14px;
}
"""
with gr.Blocks(css=custom_css) as interface:
gr.Markdown("# XAI: Visualize Object Detection of Your Models")
default_sample = "Sample 1"
with gr.Row():
# Left side: Sample selection and upload image
with gr.Column():
sample_selection = gr.Radio(
choices=list(sample_images.keys()),
label="Select a Sample Image",
type="value",
value=default_sample,
)
upload_image = gr.Image(
label="Upload an Image",
type="pil",
)
selected_models = gr.CheckboxGroup(
choices=["yolov5", "yolov8s"],
value=["yolov5"],
label="Select Model(s)",
)
run_button = gr.Button("Run", elem_id="run_button")
with gr.Column():
sample_display = gr.Image(
value=load_sample_image(default_sample),
label="Selected Sample Image",
)
# Below the sample image, display results and architecture side by side
with gr.Row():
result_gallery = gr.Gallery(
label="Results",
elem_id="gallery",
rows=1,
height=500,
)
netron_display = gr.HTML(label="Netron Visualization")
sample_selection.change(
fn=load_sample_image,
inputs=sample_selection,
outputs=sample_display,
)
run_button.click(
fn=process_image,
inputs=[sample_selection, upload_image, selected_models],
outputs=[result_gallery],
)
# Update Netron display when the interface loads
netron_display.value = view_model() # Directly set the value
# Launching Gradio app and handling Netron visualization separately.
if __name__ == "__main__":
interface.launch(share=True)
|