Spaces:
Sleeping
Sleeping
File size: 16,113 Bytes
959e306 3615160 32661f6 71d349e 8bba5b6 71d349e a7cff98 71d349e 8bba5b6 71d349e 8bba5b6 a7cff98 9c61f75 13a166e 9c61f75 13a166e 9c61f75 13a166e 9c61f75 71d349e 3615160 a2d322d 9a9bdf3 3615160 959e306 c387c55 13a166e 3615160 c387c55 3615160 c387c55 dc3055d 3615160 c387c55 cb8e09a c387c55 cb8e09a c387c55 ded489d c387c55 3615160 959e306 71d349e a2d322d fe8c8cb 9c61f75 fe8c8cb a2d322d 3615160 959e306 31a3304 a2d322d d4a767a 9c61f75 fe8c8cb cb8e09a a2d322d 959e306 3615160 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import gradio as gr
import os
# Paths for images
yolov5_result = os.path.join(os.getcwd(), "data/xai/yolov5.png")
yolov8_result = os.path.join(os.getcwd(), "data/xai/yolov8.png")
yolov5_dff = os.path.join(os.getcwd(), "data/xai/yolov5_dff.png")
yolov8_dff = os.path.join(os.getcwd(), "data/xai/yolov8_dff.png")
architecture_description_yolov5 = """
### YOLOv5 Architecture
- **Backbone**: Uses **CSPDarknet53** for feature extraction with **ResNet**-like residual connections.
- **Neck**: **PANet** and **FPN** aggregate features at multiple scales.
- **Head**: Predicts bounding boxes (x, y, w, h), class probabilities, and objectness scores.
- **Loss Functions**: **CIoU** for bounding box regression, **cross-entropy** for classification.
- **Grid-based Detection**: Divides input into grid cells predicting multiple bounding boxes.
- **Non-Maximum Suppression (NMS)**: Filters overlapping boxes with high confidence.
"""
architecture_description_yolov8s = """
### YOLOv8s Architecture
- **Backbone**: Uses **CSPDarknet** with efficient feature extraction layers.
- **Neck**: Incorporates **FPN** and **PANet** for multi-scale feature aggregation.
- **Head**: Predicts bounding boxes, objectness scores, and class probabilities.
- **Loss Functions**: **CIoU** for bounding box regression, **cross-entropy** for classification.
- **Grid-based Prediction**: Outputs predictions per grid cell using multiple anchor boxes.
- **Post-Processing**: **NMS** removes redundant boxes with high overlap.
"""
description_yolov5 = """
#### **1. Feature Focus for Dogs:**
- The model primarily focuses on:
- **Face and Snout:** Key identifiers like eyes, nose, and mouth for dog recognition.
- **Ears:** Distinctive ear shapes, such as pointed or floppy ears, are highlighted.
- **Body Shape:** Focuses on the overall body contour, including legs and tails.
- **Fur Texture:** Highlights curly fur in poodles and smooth fur in corgis.
#### **2. Feature Focus for Cats:**
- The network highlights:
- **Face and Eyes:** Sharp eyes and whiskers as distinguishing features.
- **Ears:** Pointy ears emphasized for identification.
- **Body Size and Posture:** Compact body shape and sitting posture are captured.
- **Tail and Paws:** Occasionally highlights tails or paws for finer details.
#### **3. Incorrect Focus or Ambiguity:**
- Some panels show **misfocused areas**, such as:
- **Background:** Irrelevant parts receive attention, causing confusion.
- **Shared Features:** Overlap in fur patterns or body shapes may lead to errors.
#### **4. Insights:**
- The visualizations explain **why the model classifies certain parts as important** for distinguishing dogs and cats.
- They highlight **potential biases** or areas for improvement, e.g., reliance on shared features instead of species-specific traits.
"""
description_yolov8 = """
#### **1. Feature Focus for Dogs:**
- **Facial Features:** Strong emphasis on **eyes, nose, and mouth**, aiding in species identification.
- **Ears and Fur Texture:** Highlights distinctive **fluffy or smooth fur patterns** and **ear shapes** (pointed or floppy).
- **Body and Legs:** Focus on the **overall contour, legs, and tails**, distinguishing body structures of breeds like poodles and corgis.
#### **2. Feature Focus for Cats:**
- **Face and Eyes:** Sharp focus on **eyes and whiskers**, key characteristics of feline features.
- **Body Shape and Tail:** Emphasizes the **compact size and tail curvature**.
- **Paws and Posture:** Captures sitting postures and detailed paw structures.
#### **3. Incorrect Focus or Ambiguity:**
- **Background Highlights:** Some heatmaps show attention to **background regions**, leading to irrelevant feature extraction.
- **Shared Features:** Overlapping fur patterns and body structures between dogs and cats occasionally result in misclassification risks.
- **Edge and Border Effects:** Emphasis on **image boundaries** could reflect dataset biases during training.
#### **4. Insights:**
- Refinements, such as **attention-based mechanisms**, can improve focus on discriminative features and reduce errors.
"""
# Netron HTML templates
def get_netron_html(model_url):
return f"""
<div style="background-color: black; padding: 1px; border: 0.5px solid white;">
<iframe
src="{model_url}"
width="100%"
height="800"
frameborder="0">
</iframe>
</div>
"""
# URLs for Netron visualizations
yolov5_url = "https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx"
yolov8_url = "https://netron.app/?url=https://huggingface.co/spaces/BhumikaMak/NeuralVista/resolve/main/weight_files/yolov8s.pt"
custom_css = """
body {
background-color: #fcf4ee;
background-size: 1800px 1800px;
height: 100%;
margin: 0;
overflow-y: auto;
}
#neural-vista-title {
color: #800000 !important;
font-size: 32px;
font-weight: bold;
text-align: center;
}
#neural-vista-text {
color: #800000 !important;
font-size: 18px;
font-weight: bold;
text-align: center;
}
#highlighted-text {
font-weight: bold;
color: #1976d2;
}
.custom-row {
display: flex;
justify-content: center; /* Align horizontally */
align-items: center; /* Align vertically */
padding: 10px; /* Adjust as needed for spacing */
}
.custom-button {
background-color: #800000;
color: white;
font-size: 12px; /* Small font size */
width: 100px !important; /* Fixed width */
height: 35px !important; /* Fixed height */
border-radius: 6px; /* Slightly rounded corners */
padding: 0 !important; /* Remove extra padding */
cursor: pointer;
text-align: center;
margin: 0 auto; /* Center within its container */
box-sizing: border-box; /* Ensure consistent sizing */
}
#run-button {
background-color: #800000 !important;
color: white !important;
font-size: 12px !important; /* Small font size */
width: 100px !important; /* Fixed width */
height: 35px !important; /* Fixed height */
border-radius: 6px !important;
padding: 0 !important;
text-align: center !important;
display: block !important; /* Ensure block-level alignment */
margin: 0 auto !important; /* Center horizontally */
box-sizing: border-box !important;
}
/* Custom border styles for all Gradio components */
.gradio-container, .gradio-row, .gradio-column, .gradio-input, .gradio-image, .gradio-checkgroup, .gradio-button, .gradio-markdown {
border: 3px #800000 !important; /* Border width and color */
border-radius: 8px !important; /* Rounded corners */
}
/* Additional customizations for images to enhance visibility of the border */
.gradio-image img {
border-radius: 8px !important;
border: 3px solid black !important; /* Border for image */
}
/* Custom Row for images and buttons */
.custom-row img {
border-radius: 10px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
}
#highlighted-text {
font-weight: bold;
color: #1976d2;
}
.gradio-block {
max-height: 100vh; /* Allow scrolling within the Gradio blocks */
overflow-y: auto; /* Enable scrolling for the content if it overflows */
}
#neural-vista-title {
color: #800000 !important; /* Purple color for the title */
font-size: 32px; /* Adjust font size as needed */
font-weight: bold;
text-align: center;
}
#neural-vista-text {
color: #800000 !important; /* Purple color for the title */
font-size: 18px; /* Adjust font size as needed */
font-weight: bold;
text-align: center;
}
"""
import netron
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s
# Sample images directory
sample_images = {
"Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
"Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}
def load_sample_image(sample_name):
"""Load a sample image based on user selection."""
image_path = sample_images.get(sample_name)
if image_path and os.path.exists(image_path):
return Image.open(image_path)
return None
def process_image(sample_choice, uploaded_image, yolo_versions, target_lyr = -5, n_components = 8):
"""Process the image using selected YOLO models."""
# Load sample or uploaded image
if uploaded_image is not None:
image = uploaded_image
else:
image = load_sample_image(sample_choice)
# Preprocess image
image = np.array(image)
image = cv2.resize(image, (640, 640))
result_images = []
# Apply selected models
for yolo_version in yolo_versions:
if yolo_version == "yolov5":
result_images.append(xai_yolov5(image, target_lyr = -5, n_components = 8))
elif yolo_version == "yolov8s":
result_images.append(xai_yolov8s(image))
else:
result_images.append((Image.fromarray(image), f"{yolo_version} not implemented."))
return result_images
def view_model(selected_models):
"""Generate Netron visualization for the selected models."""
netron_html = ""
for model in selected_models:
if model=="yolov8s":
netron_html = f"""
<iframe
src="https://netron.app/?url=https://huggingface.co/spaces/BhumikaMak/NeuralVista/resolve/main/weight_files/yolov8s.pt"
width="100%"
height="800"
frameborder="0">
</iframe>
"""
if model == "yolov5":
netron_html = f"""
<iframe
src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx"
width="100%"
height="800"
frameborder="0">
</iframe>
"""
return netron_html if netron_html else "<p>No valid models selected for visualization.</p>"
with gr.Blocks(css=custom_css) as demo:
gr.HTML("""
<div style="border: 2px solid #a05252; padding: 20px; border-radius: 8px;">
<span style="color: #800000; font-family: 'Papyrus', cursive; font-weight: bold; font-size: 32px;">NeuralVista</span><br><br>
<span style="color: black; font-family: 'Papyrus', cursive; font-size: 18px;">A harmonious framework of tools <span style="color: red; font-family: 'Papyrus', cursive; font-size: 18px;">☼</span> designed to illuminate the inner workings of AI.</span>
</div>
""")
with gr.Row():
with gr.Column():
gr.Markdown(architecture_description_yolov5)
gr.HTML(get_netron_html(yolov5_url))
gr.Image(yolov5_result, label="Detections & Interpretability Map")
gr.Markdown(description_yolov5)
gr.Image(yolov5_dff, label="Feature Factorization & discovered concept")
with gr.Column():
gr.Markdown(architecture_description_yolov8s)
gr.HTML(get_netron_html(yolov8_url))
gr.Image(yolov8_result, label="Detections & Interpretability Map")
gr.Markdown(description_yolov8)
gr.Image(yolov8_dff, label="Feature Factorization & discovered concept")
default_sample = "Sample 1"
with gr.Row():
# Left side: Sample selection and image upload
with gr.Column():
sample_selection = gr.Radio(
choices=list(sample_images.keys()),
label="Select a Sample Image",
value=default_sample,
)
upload_image = gr.Image(
label="Upload an Image",
type="pil",
)
selected_models = gr.CheckboxGroup(
choices=["yolov5", "yolov8s"],
value=["yolov5"],
label="Select Model(s)",
)
#with gr.Row(elem_classes="custom-row"):
run_button = gr.Button("Run", elem_id="run-button")
with gr.Column():
sample_display = gr.Image(
value=load_sample_image(default_sample),
label="Selected Sample Image",
)
gr.HTML("""
<span style="font-size: 14px; font-weight: bold;">The visualization demonstrates object detection and interpretability. Detected objects are highlighted with bounding boxes, while the heatmap reveals regions of focus, offering insights into the model's decision-making process.</span>
""")
# Results and visualization
with gr.Row(elem_classes="custom-row"):
result_gallery = gr.Gallery(
label="Results",
rows=1,
height="auto", # Adjust height automatically based on content
columns=1 ,
object_fit="contain"
)
netron_display = gr.HTML(label="Netron Visualization")
# Update sample image
sample_selection.change(
fn=load_sample_image,
inputs=sample_selection,
outputs=sample_display,
)
gr.HTML("""
<span style="font-size: 14px; ">
<span style="color: #800000;">Concept Discovery</span> is the process of uncovering the hidden, high-level features that a deep learning model has learned. It provides a way to understand the essence of its internal representations, akin to peering into the mind of the model and revealing the meaningful patterns it detects in the data.
<br><br>
<span style="color: #800000;">Deep Feature Factorization</span> (DFF) serves as a tool for breaking down these complex features into simpler, more interpretable components. By applying matrix factorization on activation maps, it untangles the intricate web of learned representations, making it easier to comprehend what the model is truly focusing on. Together, these methods bring us closer to understanding the underlying logic of neural networks, shedding light on the often enigmatic decisions they make.
</span>
""")
with gr.Row(elem_classes="custom-row"):
dff_gallery = gr.Gallery(
label="Deep Feature Factorization",
rows=2, # 8 rows
columns=4, # 1 image per row
object_fit="fit",
height="auto" # Adjust as needed
)
# Multi-threaded processing
def run_both(sample_choice, uploaded_image, selected_models):
results = []
netron_html = ""
# Thread to process the image
def process_thread():
nonlocal results
target_lyr = -5
n_components = 8
results = process_image(sample_choice, uploaded_image, selected_models, target_lyr = -5, n_components = 8)
# Thread to generate Netron visualization
def netron_thread():
nonlocal netron_html
gr.HTML("""
Generated abstract visualizations of model""")
netron_html = view_model(selected_models)
# Launch threads
t1 = threading.Thread(target=process_thread)
t2 = threading.Thread(target=netron_thread)
t1.start()
t2.start()
t1.join()
t2.join()
image1, text, image2 = results[0]
if isinstance(image2, list):
# Check if image2 contains exactly 8 images
if len(image2) == 8:
print("image2 contains 8 images.")
else:
print("Warning: image2 does not contain exactly 8 images.")
else:
print("Error: image2 is not a list of images.")
return [(image1, text)], netron_html, image2
# Run button click
run_button.click(
fn=run_both,
inputs=[sample_selection, upload_image, selected_models],
outputs=[result_gallery, netron_display, dff_gallery],
)
demo.launch()
|