File size: 15,299 Bytes
959e306
 
 
3615160
32661f6
 
 
 
 
9c61f75
7df80ac
cf8103c
7df80ac
 
 
 
 
 
 
 
 
 
 
 
 
1329b1b
463a96b
9c61f75
b5252ed
9c61f75
b5252ed
 
 
 
 
 
9c61f75
b5252ed
9c61f75
b5252ed
 
 
 
 
9c61f75
b5252ed
 
9c61f75
 
 
71d349e
3615160
 
 
a2d322d
9a9bdf3
 
 
 
 
 
 
3615160
 
 
 
 
959e306
c387c55
 
b47f0d2
3615160
 
85a5d90
3615160
 
c387c55
 
3615160
 
c387c55
 
 
 
dc3055d
3615160
c387c55
 
 
 
 
 
 
cb8e09a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c387c55
 
cb8e09a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a5d90
c387c55
 
ded489d
 
c387c55
 
3615160
959e306
 
84bccf4
96291ac
09c1404
 
 
 
 
 
 
 
 
 
 
 
96291ac
a5cef68
fe8c8cb
9c61f75
fe8c8cb
a2d322d
3615160
959e306
84bccf4
96291ac
 
 
 
 
84bccf4
96291ac
 
 
 
 
 
 
 
a5cef68
d4a767a
9c61f75
fe8c8cb
cb8e09a
47e52c3
f8fd296
 
4025380
a4ee3d5
f8fd296
 
 
cb8e09a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d393b3
cb8e09a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c83510
cb8e09a
 
df778ab
cb8e09a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2d322d
959e306
3615160
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import gradio as gr
import os

# Paths for images
yolov5_result = os.path.join(os.getcwd(), "data/xai/yolov5.png")
yolov8_result = os.path.join(os.getcwd(), "data/xai/yolov8.png")
yolov5_dff = os.path.join(os.getcwd(), "data/xai/yolov5_dff.png")
yolov8_dff = os.path.join(os.getcwd(), "data/xai/yolov8_dff.png")

description_yolov5 = """
### Feature Focus Comparison
| Feature           | <span style="color: maroon;"><strong>Dogs</strong></span>                | <span style="color: maroon;"><strong>Cats</strong></span>                |
|-------------------|-----------------------------------|-------------------------------|
| **Face & Snout**  | Eyes, nose, and mouth for recognition | Sharp eyes, whiskers         |
| **Ears**          | Pointed or floppy shapes          | Pointed for identification   |
| **Body Shape**    | Legs, tail, and contour           | Compact, sitting posture     |
| **Fur Texture**   | Curly (poodles), smooth (corgis)  | N/A                           |
| **Tail & Paws**   | N/A                               | Often highlighted             |
### Common Errors
| Issue             | Description                       |
|-------------------|-----------------------------------|
| **Background**    | Irrelevant areas confused with key features |
| **Shared Features**| Overlapping fur or body shapes causing errors |
### Insights:
- Visualizations help identify key traits and potential classification biases.
"""

description_yolov8 = """
### Feature Focus Comparison

| Feature             | **Dogs**                              | **Cats**                          |
|---------------------|---------------------------------------|-----------------------------------|
| **Facial Features**  | Eyes, nose, mouth for species ID      | Sharp focus on eyes and whiskers  |
| **Ears & Fur Texture**| Fluffy/smooth fur, pointed/floppy ears | N/A                               |
| **Body & Legs**      | Focus on contour, legs, and tails     | Emphasizes compact size and tail  |
| **Paws & Posture**   | N/A                                   | Sitting posture, paw structures  |

### Common Errors

| Issue               | Description                           |
|---------------------|---------------------------------------|
| **Background Focus**| Attention to irrelevant background regions |
| **Shared Features**  | Overlapping features between dogs and cats |
| **Edge Effects**     | Bias from emphasis on image borders during training |

### Insights:
- Attention-based mechanisms can improve focus on key features and reduce misclassification.
"""



# Netron HTML templates
def get_netron_html(model_url):
    return f"""
        <div style="background-color: black; padding: 1px; border: 0.5px solid white;">
            <iframe 
                src="{model_url}" 
                width="100%" 
                height="800" 
                frameborder="0">
            </iframe>
        </div>
    """

# URLs for Netron visualizations
yolov5_url = "https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx"
yolov8_url = "https://netron.app/?url=https://huggingface.co/spaces/BhumikaMak/NeuralVista/resolve/main/weight_files/yolov8s.pt"

custom_css = """
body {
    background-color: white; 
    background-size: 1800px 1800px;
    height: 100%;
    color-scheme: light !important;
    margin: 0;
    overflow-y: auto;
}
#neural-vista-title {
    color: #800000 !important;
    font-size: 32px;
    font-weight: bold;
    text-align: center;
}
#neural-vista-text {
    color: #800000  !important;
    font-size: 18px;
    font-weight: bold;
    text-align: center;
}
#highlighted-text {
    font-weight: bold;
    color: #1976d2;
}
.custom-row {
    display: flex;
    justify-content: center; /* Align horizontally */
    align-items: center;     /* Align vertically */
    padding: 10px;           /* Adjust as needed for spacing */
}
.custom-button {
    background-color: #800000;
    color: white;
    font-size: 12px;         /* Small font size */
    width: 100px !important;            /* Fixed width */
    height: 35px !important;            /* Fixed height */
    border-radius: 6px;      /* Slightly rounded corners */
    padding: 0 !important;              /* Remove extra padding */
    cursor: pointer;
    text-align: center;
    margin: 0 auto;          /* Center within its container */
    box-sizing: border-box;  /* Ensure consistent sizing */
}
#run-button {
    background-color: #800000 !important;
    color: white !important;
    font-size: 12px !important;  /* Small font size */
    width: 100px !important;     /* Fixed width */
    height: 35px !important;     /* Fixed height */
    border-radius: 6px !important;
    padding: 0 !important;
    text-align: center !important;
    display: block !important;   /* Ensure block-level alignment */
    margin: 0 auto !important;   /* Center horizontally */
    box-sizing: border-box !important;
}
/* Custom border styles for all Gradio components */
.gradio-container, .gradio-row, .gradio-column, .gradio-input, .gradio-image, .gradio-checkgroup, .gradio-button, .gradio-markdown {
    border: 3px #800000 !important;  /* Border width and color */
    border-radius: 8px !important;      /* Rounded corners */
}
/* Additional customizations for images to enhance visibility of the border */
.gradio-image img {
    border-radius: 8px !important;
    border: 3px solid black !important;  /* Border for image */
}
/* Custom Row for images and buttons */
.custom-row img {
    border-radius: 10px;
    box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
}
#highlighted-text {
    font-weight: bold;
    color: #1976d2;
}
.gradio-block {
    max-height: 100vh;  /* Allow scrolling within the Gradio blocks */
    overflow-y: auto;   /* Enable scrolling for the content if it overflows */
}
#neural-vista-title {
    color: #800000 !important;  /* Purple color for the title */
    font-size: 32px;           /* Adjust font size as needed */
    font-weight: bold;
    text-align: center;
}
#neural-vista-text {
    color: #800000  !important;  /* Purple color for the title */
    font-size: 18px;           /* Adjust font size as needed */
    font-weight: bold;
    text-align: center;
    
}

"""

import netron
import threading
import gradio as gr
import os
from PIL import Image
import cv2
import numpy as np
from yolov5 import xai_yolov5
from yolov8 import xai_yolov8s

# Sample images directory
sample_images = {
    "Sample 1": os.path.join(os.getcwd(), "data/xai/sample1.jpeg"),
    "Sample 2": os.path.join(os.getcwd(), "data/xai/sample2.jpg"),
}

def load_sample_image(sample_name):
    """Load a sample image based on user selection."""
    image_path = sample_images.get(sample_name)
    if image_path and os.path.exists(image_path):
        return Image.open(image_path)
    return None

def process_image(sample_choice, uploaded_image, yolo_versions, target_lyr = -5, n_components = 8):
    """Process the image using selected YOLO models."""
    # Load sample or uploaded image
    if uploaded_image is not None:
        image = uploaded_image
    else:
        image = load_sample_image(sample_choice)

    # Preprocess image
    image = np.array(image)
    image = cv2.resize(image, (640, 640))
    result_images = []

    # Apply selected models
    for yolo_version in yolo_versions:
        if yolo_version == "yolov5":
            result_images.append(xai_yolov5(image, target_lyr = -5, n_components = 8)) 
        elif yolo_version == "yolov8s":
            result_images.append(xai_yolov8s(image))
        else:
            result_images.append((Image.fromarray(image), f"{yolo_version} not implemented."))
    return result_images

def view_model(selected_models):
    """Generate Netron visualization for the selected models."""
    netron_html = ""
    for model in selected_models:
        if model=="yolov8s":
            netron_html = f"""
            <iframe 
                src="https://netron.app/?url=https://huggingface.co/spaces/BhumikaMak/NeuralVista/resolve/main/weight_files/yolov8s.pt" 
                width="100%" 
                height="800" 
                frameborder="0">
            </iframe>
            """
        if model == "yolov5":
            netron_html = f"""
            <iframe 
                src="https://netron.app/?url=https://huggingface.co/FFusion/FFusionXL-BASE/blob/main/vae_encoder/model.onnx" 
                width="100%" 
                height="800" 
                frameborder="0">
            </iframe>
            """
    return netron_html if netron_html else "<p>No valid models selected for visualization.</p>"

with gr.Blocks(css=custom_css, theme="default") as demo:
    gr.HTML("""
      <div style="border: 2px solid #a05252; padding: 20px; border-radius: 8px;">
        <span style="color: #800000; font-family: 'Papyrus', cursive; font-weight: bold; font-size: 32px;">NeuralVista</span><br><br>
        <span style="color: black; font-family: 'Papyrus', cursive; font-size: 18px;">A harmonious framework of tools <span style="color: red; font-family: 'Papyrus', cursive; font-size: 18px;">☼</span> designed to illuminate the inner workings of AI.</span>
      </div>
    """)
    
    with gr.Row():
        with gr.Column():
            gr.Markdown(""" ## Yolov5 """)
            html_content1 = """
                <div style="display: flex; gap: 10px;">
                  <a href="https://github.com/ultralytics/yolov5/actions" target="_blank">
                    <img src="https://img.shields.io/badge/YOLOv5%20CI-passing-brightgreen" alt="YOLOv5 CI">
                  </a>
                  <a href="https://doi.org/10.5281/zenodo.7347926" target="_blank">
                    <img src="https://img.shields.io/badge/DOI-10.5281%2Fzenodo.7347926-blue" alt="DOI">
                  </a>
                  <a href="https://hub.docker.com/r/ultralytics/yolov5" target="_blank">
                    <img src="https://img.shields.io/badge/docker%20pulls-361k-blue" alt="Docker Pulls">
                  </a>
                </div>
            """
            gr.HTML(html_content1)
           # gr.HTML(get_netron_html(yolov5_url))
            gr.Image(yolov5_result, label="Detections & Interpretability Map")
            gr.Markdown(description_yolov5)
            gr.Image(yolov5_dff, label="Feature Factorization & discovered concept")
            

        with gr.Column():
            gr.Markdown(""" ## Yolov8s """)
            html_content2 = """
                <div style="display: flex; gap: 10px;">
                  <a href="https://github.com/ultralytics/ultralytics/actions" target="_blank">
                    <img src="https://img.shields.io/badge/YOLOv8%20CI-passing-brightgreen" alt="YOLOv8 CI">
                  </a>
                  <a href="https://zenodo.org/records/10443804" target="_blank">
                    <img src="https://img.shields.io/badge/DOI-10.5281%2Fzenodo.7347926-blue" alt="DOI">
                  </a>
                  <a href="https://hub.docker.com/r/ultralytics/ultralytics" target="_blank">
                    <img src="https://img.shields.io/badge/docker%20pulls-500k-blue" alt="Docker Pulls">
                  </a>
                </div>
            """
            gr.HTML(html_content2)
           # gr.HTML(get_netron_html(yolov8_url))
            gr.Image(yolov8_result, label="Detections & Interpretability Map")
            gr.Markdown(description_yolov8)
            gr.Image(yolov8_dff, label="Feature Factorization & discovered concept")

    gr.HTML(
        """
        <div style="text-align: center; border: 3px solid maroon; padding: 10px; border-radius: 10px; background-color: #f8f8f8;">
            <h3>Want to try yourself? 🚀</h3>
            <p><b>Upload an image below to discover <span style="color: #ff6347;">☼</span> the concepts</b></p>
        </div>
        """
    )
    default_sample = "Sample 1"

    with gr.Row():
        # Left side: Sample selection and image upload
        with gr.Column():
            sample_selection = gr.Radio(
                choices=list(sample_images.keys()),
                label="Select a Sample Image",
                value=default_sample,
            )

            upload_image = gr.Image(
                label="Upload an Image",
                type="pil",  
            )

            selected_models = gr.CheckboxGroup(
                choices=["yolov5", "yolov8s"],  # Only the models that can be selected
                value=["yolov5"],
                label="Select Model(s)",
            )
            run_button = gr.Button("Run", elem_id="run-button")

        with gr.Column():
            sample_display = gr.Image(
                value=load_sample_image(default_sample),  
                label="Selected Sample Image",
            )
    
    # Results and visualization
    with gr.Row(elem_classes="custom-row"):
        result_gallery = gr.Gallery(
            label="Results",
            rows=1, 
            height="auto",       # Adjust height automatically based on content
            columns=1 ,
            object_fit="contain"
        ) 
        netron_display = gr.HTML(label="Netron Visualization")

    # Update sample image
    sample_selection.change(
        fn=load_sample_image,
        inputs=sample_selection,
        outputs=sample_display,
    )
    gr.Markdown(""" #### Feature Factorization & discovered concepts. """)
    with gr.Row(elem_classes="custom-row"):
        dff_gallery = gr.Gallery(
            label="Feature Factorization & discovered concept",
            rows=2,          # 8 rows
            columns=4,       # 1 image per row
            object_fit="fit",
            height="auto"    # Adjust as needed
        ) 

    # Multi-threaded processing
    def run_both(sample_choice, uploaded_image, selected_models):
        results = []
        netron_html = ""

        # Thread to process the image
        def process_thread():
            nonlocal results
            target_lyr = -5 
            n_components = 8
            results = process_image(sample_choice, uploaded_image, selected_models, target_lyr = -5, n_components = 8)

        # Thread to generate Netron visualization
        def netron_thread():
            nonlocal netron_html
            gr.HTML("""
            Generated abstract visualizations of model""")
            netron_html = view_model(selected_models)

        # Launch threads
        t1 = threading.Thread(target=process_thread)
        t2 = threading.Thread(target=netron_thread)
        t1.start()
        t2.start()
        t1.join()
        t2.join()
        image1, text, image2 = results[0]
        if isinstance(image2, list):
            # Check if image2 contains exactly 8 images
            if len(image2) == 8:
                print("image2 contains 8 images.")
            else:
                print("Warning: image2 does not contain exactly 8 images.")
        else:
            print("Error: image2 is not a list of images.")
        return [(image1, text)], netron_html, image2

    # Run button click
    run_button.click(
        fn=run_both,
        inputs=[sample_selection, upload_image, selected_models],
        outputs=[result_gallery, netron_display, dff_gallery],
    )
            

demo.launch()